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A b s t r a c t  

The CHEASE code (Cubic Hermite Element Axisymmetric Static Equilibrium) solves the Grad-Shafranov equation for 
toroidal MHD equilibria using a Hermite bicubic finite element discretization with pressure, current profiles and plasma 
boundaries specified by analytical forms or sets of experimental data points. Moreover, CHEASE allows the automatic 
generation of pressure profiles marginally stable to ballooning modes or with a prescribed fraction of bootstrap current. The 
code provides equilibrium quantities for several stability and global wave propagation codes. 
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PROGRAM SUMMARY 

l~tle of program: CHEASE 

Catalogue identifier: ADDH 

Program obtainable from: CPC Program Library, Queen's Univer- 
sity of Belfast, N. Ireland 

Licensing provisions: none 

Computer for which the program is designed and others on which 
it has been tested: 
Computers: CRAY, NEC-SX3, SUN, IBM, SG and Hewlett 
Packard workstations; 
Installations: Centre de Recherches en Physique des Plasmas, 

Ecole Polytechnique F6d6rale de Lausanne, Switzerland; 
Department of Technology, Uppsala University, Sweden; 
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UKAEA Fusion, Culham, Abingdon, United Kingdom; 
Institute for Electromagnetic Field Theory, Chalmers University of 
Technology, G6teborg, Sweden; 
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Alfv6n Laboratory, Royal Institute of Technology, Stockholm, 
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cos, SunOS, HP-UX.10, etc. 

Programming language used: FORTRAN 77 

Compiler options 
SUN-SPARC Station 10:f77 -r8 -i4 -NI30 -Nx300 
HP-K200:f'/7 +autodblpad +Onolimit -O 
IBM-RS6000: x l f - O  -qantodbl=dblpad-qaux.size=16384- 
qtkq.size=20000 -qst_size=3072 
Silicon Graphics Indigo-2:f77 -03 -r8 -i4 
Cray C-90:cf'/7 -Wf"-o aggress" -Zp 

Memory required to execute with typical data: About 8 MWords, 
runs with virtual memory on workstations without much time loss 

No. of bits in a word: 64 

Peripherals used: Disk files 

No. of bytes in distributed program, including test data, etc.: 
346968 

Distribution format: uuencoded compressed tar file 

Keywords: plasma physics, magnetohydrodynamics (MHD), equi- 
librium, Grad-Shafranov equation, cubic Hermite finite elements, 
mapping to magnetic fiux coordinates, ballooning modes, local in- 
terchange modes, bootstrap current 

Nature of the physical problem 
CHEASE [1] solves the Grad-Shafranov equation [2-4] for the 
MHD equilibrium of a Tokamak-like plasma with pressure and 
current profiles specified by analytic forms or sets of data points. 
Equilibria marginally stable to ballooning modes [5] or with a 
prescribed fraction of bootstrap current [6-8] can be computed. 
The code provides a mapping to magnetic flux coordinates, suit- 
able for MHD stability calculations or global wave propagation 
studies. The code computes equilibrium quantities for the stability 
codes ERATO [9], MARS [10], PEST [11,12], NOVA-W [13] 
and XTOR [ 14] and for the global wave propagation codes LION 
[151 and PENN [16]. 

Method of solution 
The two-dimensional MHD equilibrium (Grad-Shafranov) equa- 
tion is solved in variational form. The discretization uses a bicubic 
Hermite finite elements with continuous first order derivatives for 
the poloidal flux function qt. The nonlinearity of the problem is 
handled by a Picard iteration. The mapping to flux coordinates is 
carried out with a method which conserves the accuracy of the 
cubic finite elements. 

Typical running time 
Typical running times are given after the test run output. 

Unusual features of the program 
The code uses routines from the CRAY libsci.a program library. 
However, all these routines are included in the CHEASE package 
itself. If CHEASE computes equilibrium quantities for MARS with 
fast Fourier transforms, the NAG library is required. CHEASE is 
written in standard FORTRAN-77, except for the use of the input 
facility NAMELIST. CHEASE uses variable names with up to 8 
characters, and therefore violates the ANSI standard. CHEASE 
transfers plot quantities through an external disk file to a plot 
program named PCHEASE using the UNIRAS or the NCAR plot 
package. 
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1. Introduction 

An accurate reconstruction of toroidal magnetohydrodynamic (MHD) equilibria is essential for the study of 
tokamak plasmas, in particular for understanding their stability or the propagation of electromagnetic waves. 
For this purpose, a fast, accurate and versatile equilibrium code is required, and this was the motivation for 
constructing the toroidal MHD equilibrium solver CHEASE [ 1 ]. This code is now extensively used in many 
laboratories. In Ref. [ 1 ] the good convergence properties of CHEASE due to the bicubic Hermite finite element 
discretization were reported. The object of this paper is a more complete documentation of the current version 
of CHEASE, including several extensions from the early version [ 1 ]. 

CHEASE now includes several ways of specifying the equilibrium profiles for current and pressure. It also 
allows automatic generation of pressure profiles marginally stable to ballooning modes [ 5] (localized pressure 
driven instabilities with high toroidal mode number n). The pressure profile can also be adjusted to generate 
equilibria with a prescribed profile of bootstrap current [6-8] (current along the magnetic field lines caused 
by the equilibrium pressure gradient). The present version of CHEASE supplies equilibrium quantities for the 
MHD stability codes ERATO [9] and MARS [10] (as documented in Ref. [1] ), and also for the stability 
codes PEST [11,12], NOVA-W [13] and XTOR [ 14], and the wave propagation codes LION [ 15] and PENN 
[ 16]. The PENN code requires equilibrium quantities with continuous second derivatives, one order higher 
than what is provided by the bicubic Hermite finite elements used in CHEASE. The desired smoothness of the 
equilibrium is obtained by a bicubic spline interpolation of the bicubic Hermite element solution. 

CHEASE has been modified to deal with equilibria having up-down asymmetric cross sections. This option 
is essential because many tokamaks, including JET (Joint European Torus) [18] and the planned ITER 
(International Thermonuclear Experimental Reactor) [ 19] operate in single-null divertor mode, thus generating 
equilibria with a magnetic separatrix and an X-point at the bottom of the cross section. The input to CHEASE, 
the plasma boundary and the equilibrium profiles, can be prescribed by functional forms or by sets of points. 
The latter option is used for the reconstruction of experimental equilibria. 

2. The toroidal MHD equilibrium problem 

2.1. General equations 

The MHD equilibrium equations read 

J x  B = X T p ,  

V x B = J ,  

V . B = 0 ,  (1) 

where B denotes the magnetic field, J the current density and p the plasma pressure, which is assumed to be 
isotropic. In axisymmetric geometry, the magnetic field can be represented as 

B = TV~b + V~b x V1/', (2) 

where ~b is the ignorable toroidal angle (see Fig. I) and ~ is the poloidal magnetic flux function. In the 
following only static MHD equilibria are considered, and for these, the pressure p and the poloidal current 
flux function T are functions of gt only. Substituting Eq. (2) into Eq. ( I )  leads to the elliptic second-order 
nonlinear partial differential Grad-Shafranov equation [2-4],  
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Fig. 1. The cylindrical coordinates (R; Z; ~b) in toroidal geometry. 

X7 • ~-~7~-1 J4R - .p'(!F) - ~2TT'(gt) , (3) 

where je denotes the toroidal plasma current density, R the major radius of the torus and prime the derivative 
with respect to 9". The nature of the equilibria (i.e. tokamak, reversed field pinch, etc.) is determined by the 
two free functions p,(gt)  and TT'(~) .  

In the following the plasma cross section 12 is assumed to be known. Thus, we restrict consideration of Eq. 
(3) to the fixed boundary case with 9 t = 0 at the plasma edge 6/2. In CHEASE, the shape of 61"2 is rather 
arbitrary, and its prescription is described in Section 6.4.1. Furthermore, only cases with a single magnetic axis 
(where x79' = 0) are considered. It is also assumed that g' < 0 everywhere inside the plasma and that the total 
plasma current 

I = / j ¢  dS 

19 

(4) 

is positive. 
For the solution of the equilibrium equation (3), CHEASE transforms the plasma cross section /2 in Fig. 1 

into a rectangular region 0 _< 0. _< 1, 0 <_ 0 _< 27r. The nonorthogonal coordinate system (0",8) is related to 
cylindrical coordinates (R, Z) by 

R = 0.ps(O) cos0 + Rc, 

Z = 0.Ps (0) sin 0 + Zc. (5) 

The variational form of Eq. (3) is discretized using bicubic Hermite finite elements. The nonlinear discretized 
system is solved by a Picard iteration (see Section 5.2). Here, we only point out that the equilibrium is computed 
in two steps. First a solution is generated on a coarse grid with a polar mesh centred at the geometrical midpoint 
(R0,0) of the cross section. (The coordinate system is shifted so that Z0 = 0.) Then the grid is refined and 
the origin of the polar coordinates (Rc, Zc) is moved to the magnetic axis (Rmag, Zmag) of the coarse solution. 
This is done to facilitate the subsequent mapping to flux coordinates. 
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2.2. Specification of the two free functions in the Grad-Shafranov equation 

There are many different ways of defining the two free functions p~(g') and 7T~(g ") in Eq. (3). For example, 
early stability optimizations were made by specifying p~(gt) and TU(g,)  independently [20]. However, this 
method makes it difficult to control equilibrium quantities such as the safety factor 

q ( ~ )  = T(g ' )  ¢ dl 
2----;- ~ R I W ' I  (6) 

qt=const. 

or the current density profile. The specification of a suitable averaged current density profile instead of the 
TTt(~ ") profile solves this problem [21,22]. 

In CHEASE, equilibrium profiles are given as functions of s, which denotes a function of the normalized 
poloidal flux ( ~ -  ~eage)/(1/'0- g%dge), where gt0 and ~edge are the flux at the magnetic axis and at the plasma 
boundary, respectively. Two profiles need to be specified to define an equilibrium, roughly speaking one for the 
pressure p~ = dp/dqs and one for the current. The present version of CHEASE can treat three different options 
for specifying the current profile. Profiles can be prescribed for either of 
• I T ' ( s ) ,  
• the surface averaged current density, 

l*(s) = fs--'e°nst'J~(J/R) dX = - C l p t ( s )  - C2IT'(s)  
fs~onst. (J/R) d X Co -~o ' (7) 

• the averaged parallel current density, 

( 1 C3)  ill(S) = ~s--...const. J ' B J d x  = Clp'(s) IT'(s) 1 + - -  (8) 
fs=eonst. B.VfbJdx  C2 T2(s) ~ " 

Here, 

{ } /{-; Co(s),CI(s),C2(s),C3(s) = ,1, R2, Jd  X (9) 
s---const. 

are surface integrals. The toroidal current density in Eq. (3) can be expressed as 

) J~ = -RC2 ~ - R p'(s) (10) 

if I*(s) is specified and 

1 1 (lc_, ) p, 
j 6 = - ~ l l l ( S ) + y  \ R C 2  - R y  (s) ,  (11) 

where 

1 C3 
y = l + - -  

T2(s) C2 

if III (s) is prescribed. If the I* or the 111 profile is specified, the integrals (9) are evaluated for a given set of 
s values, and interpolated with cubic spline functions for the calculation of j~. This requires a mapping of the 
equilibrium solution into flux coordinates ( s (g  t ) ,  X, ~b), where X is a generalized poloidal angle (see Section 
3). In that case the Grad-Shafranov equation is solved by two nested Picard iterations: one inner loop to solve 
for qt where j~ is computed from (10) or (11) with fixed surface integrals (9) and one outer loop iterating 
on the integrals. These are the two innermost loops in Fig. 2. 

OS
Note
R0 (used for normalization so 1 within chease)
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Fig. 2. Flow diagram of CHEASE. 
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2.3. Transformation of the equilibrium 

A single solution of the Grad-Shafranov equation (3) can be rescaled to generate a whole sequence of 
equilibria with fixed poloidal beta and internal inductance, but with different plasma current, rotational transform 
and toroidal beta (see Section 5.3). In CHEASE these transformations allow the generation of equilibria with 
prescribed values of either the total current (4) or of the safety factor (6) at some arbitrary flux surface 'b'q, 
and simultaneously with a specified value of T at a given flux surface '/'r. 

After these transformations, all relevant physical quantities characterizing the equilibrium are computed. Table 
1 shows the definitions of the most important global quantities evaluated in CHEASE. (Some of the quantities 
in Ref. [ 1], Table 1, have been rescaled by a factor Rmag/Ro to agree with the commonly used definitions.) 

3. Mapping of the equilibrium into flux coordinates 

CHEASE provides the equilibrium quantities for the MHD stability codes ERATO [9],  MARS [ 10], NOVA- 
W [13],  PEST [11,12] and XTOR [14],  and for the global wave propagation codes LION [15] and PENN 
[ 16]. All these codes use a flux coordinate system (s, X, ¢ ) ,  where the radial coordinate s is defined as 

/I odgo: 
s - s ( ~ e )  = Wl~,o~ge - ~ , 0 1  ( 1 2 )  

'P" is the solution of Eq. (3) ,  X is a generalized poloidal angle and ¢ is the geometrical toroidal angle. The 
nonzero terms of the contravariant metric tensor of these coordinates are 
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Table 1 
Physical quantities computed by CHEASE 
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Global quantities 

Total plasma volume / 2~" Vtot = fa J dg" d X 

Volume average 7 = (fafJdg"dx)/Vtot 

Total toroidal current I = fa J~ (J/R) dg" dx 

Normalized total toroidal current /N = ar~ 
4 1 r  V ~  ¢ 2 

Internal inductance gi = ~ fn ~ J dg" d X 

Pressure peaking factor ppf. = p 

Total beta /3 = 2~ 
B 2 

Fusion beta /~* - 2/p2)I/2 
B2 

Total experimental beta /~x = 

- -  8 ' / r  - -  Total poloidal beta ]~p,tot - /-~0PVtot 

Flux surface quantities 

Volume of  9, = const. / 2~- 

Generalized radius of  9, = const. 

Toroidal current within 9" = const. 

Poloidal beta on 9" = const. 

Global shear on 9" = const. 

p(9,) = (v(v,)/V,o,)~/2 

14,(~ ) = f~:V, min f j¢(J/R) dxd9,' 
_ 8 1 r  tiP(9,) - - t  ~(~)Ro f~'=v'mi, p' ( 9,') V( 9,') d~' 

~(9,) = ._e__aq(9,) q(V,') dp 

gll = iWel ~, g12 = g2, _- osv,  e .  v x  - IWel=,a~,x, 

1 
g22 = i V x l  2 ' g33 = i V ~ l  2 = R - '~"  (13) 

The covariant metric tensor gij = (g/J) -1 is obtained by inverting Eq. (13). 
In ERATO, MARS, LION, NOVA-W and PEST, the angular variable X is specified by the choice of the 

Jacobian J = [ (Vq: x XTX). V~b] - l  of the mapping from (~', X, ~b) space to Cartesian coordinates. In CHEASE, 
J can have the functional form 

J = C ( , l t  ) R ' ~ I V ~  I ~ , (14) 

where a and/z are integers. C(9 ' )  is determined by demanding that X increases by 27r per poloidal turn. The 
generalized poloidal angle X and the nonorthogonality fl~'x can be expressed in the equilibrium coordinates 
(~r,0), 

o 
f R,rp~(O) x(O) = j a~,/ao.d~, 
0 
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o 
= f / " J +  °(In.)] [a(ln__~_~l) ] C ' ( ~ ) ) R o ' p 2 ( O ) , r ,  

d t l W l  2 L Oa/t Jn - ( #+2 )  n C(~) 7~a/a~ a~" (15) 
0 

For completeness, a derivation of (15) is given in Appendix A. The subscript n in (15) stands for the normal 
derivative with respect to ~', j+ is defined by Eq. (3) and C ' ( ~ )  is computed from the periodicity condition 
/3~x(0) = fl~x(2rr). In CHEASE the generalized poloidal angle 2' and the nonorthogonality fl~x in Eq. (15), 
the safety factor q (6) and the four integrals (9) are computed by Gauss integrations (see Ref. [1 ], Section 
4.1 ) that preserve the convergence rate of the cubic Hermite elements. Section 5.4 gives a list of the Equilibrium 
Quantities (EQ's) required by the different stability and wave propagation codes, together with the method of 
computation. 

4. Automatic generation of pressure profiles 

CHEASE contains options for automatic generation of pressure profiles to either of the following two criteria: 
• a profile marginally stable to ballooning modes (ballooning optimization, or BO) ; 
• a pressure profile giving a certain profle of bootstrap current (specification of bootstrap current, or SBC). 
To arrive at reasonable equilibria, it is usually preferable to specify the current profile by the 1" or IIr options. 

4.1. Ballooning, ideal and resistive interchange criteria 

Ballooning modes are internal toroidal pressure-driven modes [5]. In the limit of an infinite toroidal mode 
number n, their potential energy reads ( [23], Chapter 10.5.3) 

aW~(n  --+ ~ )  = ½ Txx ci + C2]~:rl 2 J d x ,  (16) 

- - O O  

where sCr is the radial component of the displacement vector, and X is a generalized poloidal angle extending 
from - o o  to +oo. For ballooning stability, 6)4)p must be positive definite on every flux surface. The quantities 
appearing in (16) are [5] 

1 ( iVg*[ 4 2~ 
Cl -- j2IVl/,,[2 \1 -1- T g  ) , 

c 2 = - - b 5 -  ~ . B 2 J  v, ' 

x 

i(0 ) g = P~Tv, x + d x ' ,  
x 

xo 

v = urr/R 2 , 

n z _- (T = + I W e l = ) / e  2 , 

p =p  + B Z / 2 .  (17) 

g in Eq. (17) is evaluated in CHEASE with straight fieldline coordinates characterized by J = qR2/T [ 11,12]. 
Thus, g reads 

g = ~(Xo)flq, x (Xo)  + q(fl~,fx(X) - ,Bs~fx(xo) ) + q ' ( x S f ( x )  - -  ,¥s.f. (X0)) ,  (18) 
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where the superscript s.f. stands for straight fieldline. More details about the resolution of Eq. (16) can be 
found in Ref. [ 1 ], Appendix C.3. 

The Mercier [24] and the resistive interchange [26] criteria are checked on every constant poloidal flux 
surface. A given flux surface is stable to ideal interchanges if the Mercier criterion -DI > 0 is satisfied, where 

"= ( ptTj 2 )2 pt i"I t 
--Ol \ --q7 ½ -k-"~'"5 -ptJ3)(T2JI-k-J4)" 

Resistive interchanges are stable if --DR > 0, with 

and 

-DR = - D r  - ( H -  1/2) 2 

(19) 

(20) 

TPt(  Js(J4+T2JI)) j6 + T2j 4 (21) 1-I= 7 J 2 -  • 

The primes in Eqs. (18), (19), (21) denote the derivative with respect to ~'. Appendix B.1 shows the derivation 
of these criteria in terms of the integrals 

Jl'J2'J3'J4'Js'J6 = 2-'~ R21  'I z IW,  I z' I W ' I  z '  R 2' 
qt=const. 

and Appendix B.2 details about the numerical evaluation of the Mercier criterion. 
It is well known that ballooning stability is a more restrictive condition than Mercier stability. However, 

for practical reasons, ballooning stability is computed by truncating the integration in (16) to a finite number 
of turns in 0. As a consequence the test for ballooning stability may fail to detect unstable, so-called weakly 
ballooning modes, which occur for low shear. However, this type of instability is detected by the Mercier 
criterion. Therefore, to ensure local ideal stability, it is standard practice to use a rather moderate integration 
interval in 0 for ballooning, say 10 x 2zr and also to check for Mercier stability. 

4.2. Formula for the bootstrap current 

In tokamaks, the toroidal current may be generated by applying a toroidal electric field induced by a 
time-varying magnetic flux down the center column (Ohmic current), or by means of radiofrequency waves 
(RF current) or of neutral particle beam injection (NBI), which both affect the particle distributions. In 
addition to these externally generated currents, there is the "bootstrap current" [6-8] that is generated by the 
pressure gradient of the plasma (if the collisionality is sufficiently low). In "advanced tokamak" scenarios, a 
large fraction of the current comes from the bootstrap effect. For such applications it is useful to be able to 
specify the bootstrap current profile. In CHEASE the bootstrap current is computed using the formulas given by 
Hirshman [ 8 ] for low collisionality plasmas (in the banana regime), specialized to the case of a two component 
plasma with equal temperatures Te = Ti, 

-- L32A~ (23) 
O(iAi ] 

(J" B)bs = -L31 AI + Zi,-x2j 

where 

L31 = jox [0.754 + 2.21Zi + Z 2 + x(0.348 + 1.243Zi + Z/2) ] /D(x) ,  

L32 -- - j0x(0.884 -4- 2 .074Z/) /D(x) ,  
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ai = -1 .172/(  1 + 0.462x), 

O ( x )  = 1.414Zi + Z 2 + x(0.754 + 2.657Zi + 2Z 2) + x2(0.348 + 1.243Zi + ZT), (24) 

I - fc : y d y  
x =  ' : c =  IB2> j , 

0 

• ~ i  Zi 
Al = p ' ( ~ ) ,  A~=A~2 = l + r l i Z i + l P ' ( g ' ) ,  

d(logTe) 
Jo = T ( ~ ) ,  rli = d(logn) 

The brackets (. . .)  denote the flux surface average f~=const. 
circulating particles on a flux surface. 

(25) 

• " Jdx/f~=const. J d x  and fc is the fraction of 

4.3. Method of  solution 

Except in regions of weak or negative shear, the normal inward pressure gradient destabilizes ballooning 
modes. Furthermore, the bootstrap current (23) is proportional to p~. Therefore, for a given current profile 
(whether it is specified by 7T ~, I* or III), the pressure profile can be adjusted in such a manner that the 
equilibrium is (a) marginally stable to ballooning modes or (b) the fraction of the parallel current driven by 
bootstrap is a prescribed function of the radial coordinate s. As shown in Fig. 2, CHEASE accomplishes this 
by adding a loop of iteration for the pressure profile, external to the two loops for solving the Grad-Shafranov 
equation with given pressure and current profiles. The pressure profile at iteration step k + 1 is generated 
from the pressure profile of iteration step k by different algorithms for the ballooning optimization and the 
specification of the bootstrap current profile. Further information about these algorithms is given in Section 5.5. 

5. Organization of CHEASE 

The computations in CHEASE are directed by the subroutine STEPON and can be subdivided into the 
solution of the Grad-Shafranov equation, described in Section 5.2, and the mapping to flux coordinates for 
different codes, described in Section 5.4. Before the mapping, the equilibrium is scaled according to the scaling 
laws presented in Section 5.3. 

5.1. Input files and initializations 

The different steps in solving the Grad-Shafranov equation (3) are shown in the flow diagram of Fig. 2. 
The code starts by setting the default cases in subroutine PRESET and by reading the Namelist variables from 
input channel 5. The default case is the first of the test cases presented in [ 1 ]. For an equilibrium reconstructed 
with experimental data, equilibrium profiles and a set of boundary coordinates are read in subroutine AUXVAL 
from file EXPEQ or EQDSK. This operation is described in Sections 6.4.1 and 6.4.2. 

The equilibrium is first computed on a coarse grid centred at (R0,0) and then on a refined grid centred 
at the magnetic axis of" the previous equilibrium. The shift of the grid centre makes it easy to trace the 
constant-# surfaces closest to the magnetic axis (which are required to surround the grid centre after the shift). 
The size of the coarse equilibrium mesh is prescribed in subroutine EQDIM. Good results are obtained with 
N~ = No = 24 for that grid. (However, if a very dense radial stability mesh is required close to the magnetic 
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axis, or an equilibrium with a complex plasma boundary shape is computed, it may be necessary to increase 
the dimensions of the "coarse" mesh.) 

The Picard iteration is initialized in subroutine GUESS by using a paraboloid centred at (R0,0) for the 
poloidal flux function. If the current density j~ is computed using Eq. ( 11 ), the T profile is initialized to 1 for 
the first iteration over the integrals (9). 

5.2. Solution of the Grad-Shafranov equation 

5.2.1. Variational formulation 
CHEASE uses a variational finite element method for solving the Grad-Shafranov equation (3) [29], 

f  vto. dS + f toj, dS=O, 
12 12 

(26) 

where to is an arbitrary weighting function from the same function space as 9 t. Eq. (26) is solved numerically 
in the standard manner of the finite element method by expanding 9 t in Hermite bicubics on the rectangular 
grid (o-, O) [28,29]. The unknowns of the discretized equilibrium problem are the values of the function ~', 
its first derivatives o~/ao and O~I'/aO and the mixed second derivative a2~/ao-OO, all at the nodes of the mesh. 
The integrals in Eq. (26) are carded out numerically using Gaussian quadrature. 

The nonlinear equation (26) is solved by Picard iteration, i.e. the source term for the (k + 1)th iteration is 
computed from the solution of the kth iteration, 

f lvto.X7 k+ldS=- f toj ( 'k) dS. 
12 12 

(27) 

The Picard iteration is interrupted when 

II k+l -  kll < ( 2 8 )  

where e is a predefined number. The norm used in Eq. (28) is Ilull = [,f12u 2 dS] 1/2. 

5.2.2. Boundary conditions 
As mentioned in Section 2.1, we consider the fixed boundary case ~ = 0 at 812. This implies ~g = 0 and 

0gt/aO = 0 for all the boundary points tr = 1 and 0 = 0j, j --- 1 ..... No, where No is the number of intervals in 
the 0-direction. 

The origin of the polar coordinate system requires extra care as the coordinate transformation (5) becomes 
singular there and one single geometrical point is represented by Ne mesh points. Conditions have to be imposed 
to ensure that ~/" is a regular function of R and Z at the origin. Taylor expansion of ~ around (Re, Zc), when 
expressed in terms of (o-, O), gives 

9" = ~c + trps(O) [gtR cos 0 + qtzsin0] + 0 ( o  "2) . (29) 

It follows that the regularity condition forces the 4Ne unknowns g', oalt/atr, 09/00 and 02g'/ao'00 for tr -- 0 
and 0 = O j, j = 1 ..... No to be replaced by the three unknowns ~c, #R and g'z. The following conditions are 
imposed by collocation at the No grid points for tr = 0: 

Oqt 
a--~- = O, 
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o~t 
- -  = ps(O) [g'R cos 0 + ~z  s in0] ,  
0o" 
02~ dps . . . .  
&tO0 - ps(O) [ - ~ R  sin 0 + ~z  cos 0] + ~ tv'R cos v + gtz sin 0] .  

The conditions (30) ensure the continuity of 9' and V ~  at the mesh center. 

(3O) 

5.2.3. Implementation into CHEASE 
The construction and the decomposition of the left-hand side of the variational form (26) is required only 

once per discretization mesh. The corresponding matrix is built in subroutine SETUPA, and the boundary 
conditions are imposed in subroutine LIMITA. The resulting band matrix A is symmetric positive definite, and 
therefore only the upper half-band needs to be stored. The numbering of the Oj, j = 1 . . . . .  No grid is alternative 
up-down in CHEASE, which reduces the memory requirement for the storage of A by about a factor 2 as 
compared to a clockwise numbering. This numbering is related to an inverse clockwise numbering i by 

i, i = 1 ,  
j =  2 ( i -  1), 2 < i < N o / 2 + 1 ,  (31) 

2 ( N o - i ) + 3 ,  No/2 + 2 < i < No. 

The matrix elements are localized vertically by an index array which is computed once per discretization mesh 
in subroutine INITIA, and horizontally by a statement function defined in the include file BNDIND.inc. The 
matrix is decomposed into LDU, where D is diagonal and L t fills the upper half-band of A in subroutine 
ALDLT by a standard Gauss-Seidel algorithm. 

The vector corresponding to the right-hand side of the variational form (26) is computed in subroutine 
SETUPB, and the boundary conditions are imposed in subroutine LIMITB. The calculation of the source term 
j~ is performed in subroutine CURENT, whatever option is chosen for its specification (see Section 2.2). If the 
current density is given in terms of I*(s)  or Ill(S), the integrals (9) required at the Gaussian quadrature points 
for the integration of Eq. (26) are obtained by cubic spline interpolations on a prescribed set of s-values. The 
computation of the 4 integrals at these s-values is performed in subroutine PROHL. In this subroutine, first 
the constant-~ surfaces are determined in terms of the equilibrium coordinates (o-, O) in subroutine ISOHND, 
and next, the integrals (9) are computed by Gaussian quadrature along these surfaces in subroutine CINT. 
The integration is done with a method described in Ref. [ 1 ], Section 4.1 which preserves the accuracy of the 
bicubic finite element solution. 

As discussed in Section 2.2, the nonlinearity of the Grad-Shafranov equation (3) is solved by two nested 
Picard iterations. For the inner loop lead by subroutine NONLIN, the integrals (9) are held fixed until 
convergence. Then, the integrals (9) are reevaluated from the new equilibrium solution. This requires a mapping 
of the equilibrium into flux coordinates. The iterations for the integrals (9) is directed by subroutine ITIPR, 
and the process stops when 

(i) Eq. (28) is satisfied. 

(ii) [Es_grid{Ci.l+l(S)--Ci,l(S)}2]l/2<~e- where /=  1 ..... 4 

in eq. (9) and l labels the iteration loop over the integrals. 
The iterations over qs in Eq. (27) only require forward and backward substitutions on the right-hand side of 
the variational form (26) as long as the discretization grid remains unchanged. These operations are executed 
in subroutine SOLVIT. 

5.3. Scaling of  the equilibrium 

There are two transformation rules that can be used to generate families of solutions to the Grad-Shafranov 
equation starting from a single solution. The first is a rescaling, 
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aft'new = alaD'old , Tnew = a l T o l d ,  pnew = a2pold  • 
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(32) 

and the second is a shift of T 2, 

Tn2ew = To~d + a2, (33) 

with 9" and p unchanged. These transformations leave the pressure and toroidal current profiles (as well as the 
poloidal beta and internal inductance) unchanged and are applied to generate equilibria satisfying normalization 
conditions with regard to the plasma current. These operations are carried out in the subroutine NOREPT by 
two different methods: 
• The total plasma current is specified. This is accomplished by first applying the scaling (32) with al = 

lspec/lold and then shifting T 2 using (33) with a2 = Ts2pec(qtr) - T2(qtr), where T denotes the value after 
rescaling. 

• The safety factor q is prescribed at a chosen value for the normalized flux function ~q. In this case, T 2 is first 
2 2 shifted by (33) with a2 = [qspec/qold(~q) -- 1 ]T2(~q),  and then the solution is rescaled by al = Tspec/T(~r), 

where T denotes the value after the shift. 
For equilibria with prescribed Tf '  or I* profiles for the definition of the source term je  in Section 2.2, these 
operations are applied to the converged equilibrium solution of Eq. (27). However, if the current density is 
given in terms of III by Eq. (11), a shift of T modifies the profile for j~ (9 ' ) ,  contrary to the other current 
profile definitions. Unlike the equilibria with given TT' or I* profiles, the coefficients defining III in Section 
6.4.2 must be adjusted iteratively so that the converged equilibrium satisfies q(qtq) = qspec and T ( ~ r )  = Tspec. 
Numerical tests have shown that optimal convergence properties are obtained when the scaling is executed once 
at every iteration over the p '  profile if a ballooning optimized equilibrium or an equilibrium with specified 
bootstrap current is computed, and once after every iteration over the flux surface integrals (9) otherwise. In 
order to provide a good initial guess, III is first scaled in subroutine GUESS by a factor 2/qspeelll (0). 

5.4. Mappings for global mode codes 

After scaling (Section 5.3), the equilibrium is mapped into flux coordinates, as used by the stability and 
wave codes. The code for which CHEASE produces EQ's is selected by means of the Namelist parameter 
NIDEAL as follows: 
• NIDEAL = 0 : MARS 
• NIDEAL = 1 : ERATO 
• NIDEAL = 2 : LION 
• NIDEAL = 3 : NOVA-W and PEST 
• NIDEAL = 4 : PENN 
• NIDEAL -- 5 : XTOR 
• NIDEAL --- 6 : EQDSK file (US standard input/output, e.g. of EFIT [ 17] ) 
The different mappings have a common core, which consists of first tracing the constant-'/' surfaces, and second 
computing flux surface integrals such as Eq. (6) or Eq. (15). The flux surfaces are traced in the subroutine 
ISOFIND, which computes the (o ' ,8)  coordinates for the intersections of the constant-q' surfaces with the 
equilibrium discretization mesh and for the Gaussian quadrature points along the constant-q t surfaces, used for 
the flux surface integrations. For every intersection, a cubic equation has to be solved, and performance tests 
have shown that numerical evaluation of the roots by a bissection method is much cheaper in terms of cpu 
consumption than using the analytical Cardan formulas. Moreover, X and/~ 'x  are computed at the intersections 
of the constant-~t ' surfaces with the equilibrium discretization mesh (o', 8) in that subroutine. As shown by Eq. 
(15) the generalized poloidal angle X is determined by specifying the Jacobian J (14). 
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Table 2 
Vacuum quantities for MARS 
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j EQLV(j )  

g.u ± "t~R~,- Rv¢) 2 + cz~ - z ~ )  2 )" J~, = Jr, 

g~ 1 (Rvc+s(Rv_Rvc))2 
s (Rt, - Rvc ) ~ + ( Zv - Zvc ) J,, 

5.4.1.  E R A T O  a n d  L I O N  

The EQ's for the linear ideal MHD code ERATO [9] and the wave propagation code LION [15] are 
identical, and are given in Ref. [ 1], Appendix C1, Table 2. For both codes, all distances and profiles must be 
rescaled so that Rmag = 1 and Tmag = 1 (see Section 6.4.4). Therefore, the equilibrium is first rescaled according 
to the rules in Section 5.3. Subsequently, the magnetic fields and spatial scales are redefined as follows: 

~//ERATO. LION = ~CHEASE / Rmag,  

RERATO, LION ~" RCHEAsE/Rmag, 

ZERATO. LION = ZCHEASE / Rmag, 

TTERATO. LION = T'rCHEASE Rmag, 
2 

PERATO. LION = PCHEASERmag, 

PERATO. LION = P~t~EASE RSmag, 
* * 2 

1ERATO, LION ~- ICHEASERmag ' 

1 IIERATO, LION = I I[CHEASERmag , (34) 

before computing the EQ's. 
ERATO and LION require EQ's on a (~,  X) mesh. This x-mesh is not the same as the X(tr, 0)-values 

computed in subroutine SURFACE. The (tr, 0) coordinates of the (~,  X) nodes used for computing the EQ's 
are calculated in subroutine CHIPSI by cubic spline interpolations of the X(tr, 0) and the f l ~ , x ( t r ,  O) values 
obtained from subroutine SURFACE along a constant-~ surface. Then, every EQ required by ERATO or LION 
is computed in terms of the equilibrium coordinates (tr, 0) in subroutine ERDATA. The (X, gr) mesh is also 
used for the evaluation of the ballooning stability criterion (16) and quantities for plot files, such as the local 
shear and the magnetic field-line curvature. 

5.4.2.  M A R S  

The resistive MHD linear stability code MARS [ I0] uses Fourier expansion in the poloidal direction, and a 
radial discretization with piecewise linear and constant functions [30]. No specific scaling of the equilibrium 
is necessary for MARS (although the standard prescription is to set R0 = 1 and T = 1 in the vacuum). 
The EQ's used by this code are Fourier transforms in X of quantifies defined at constant-W surfaces, at both 
integer and half-integer meshes. They are presented in Ref. [ 1 ], Table 3. A more recent version of MARS 
(including resistive walls) also requires geometrical quantities in the vacuum region surrounding the plasma. 
For completeness, these quantities are documented in Table 2. The vacuum mesh (s; X; ~b) for MARS is defined 
so that 

R = Rvc + s ( Rv - Rye) , 
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Table 3 

Equilibrium quantifies for NOVA-W and PEST 
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1 p st+ t/2 
2 p~(qt) st 
3 q st 
4 q t ( ~ )  st 
5 T st 
6 T ' ( ~ )  st 
7 T/q st 

a"T st 
9 q" st 
10 Wm sl+ I/2 
11 R (sI, Xk) 
12 Z (st, xk )  
13 J (st, Xk+l/2 ) 
14 J (st, xk )  

z = z~c + s(Zv - Zvc),  (35) 

where (Rv; Zv) are the Cartesian coordinates of the (s; X) nodes at the plasma surface and (Rye; 7-.re) is the 
centre of the vacuum mesh. Therefore, the Jacobian of the transformation from the (s; X; ~b) space to Cartesian 
coordinates in the vacuum is given by 

J,, = s R  (Ro  - Rw) - -~X  - ( Z ~ -  Zvc ) -~X  j . (36) 

All the quantities required by MARS in the plasma and the vacuum are Fourier transformed in CHEASE. Two 
possibilities exist: (a) The Fourier transform described in Ref. [1],  Appendix C.2 by setting the Namelist 
parameter NFFTOPT=0 and (b) a fast Fourier transform (NFFTOPT= 1). If the FFT's are selected, the code 
needs the NAG library. For every Fourier transform, X and sometimes/3~, x are required at a set of points along 
constant-# surfaces. These quantities are computed in a similar way as the (~ ,  X) nodes for ERATO in Section 
5.4.1 with cubic spline interpolations in subroutine GCHI. The EQ's in Table 2 and Ref. [1] ,  Table 3 are first 
calculated at a set of points in subroutine GIJLIN, and eventually Fourier transformed in subroutine FOURIER 
if NFFTOPT = 0 or FOURFFT if NFFTOPT = 1. Similarly, the vacuum EQ's in Table 2 are computed and 
Fourier transformed in subroutine VACUUM or VACUFFT depending on the choice for NFFTOPT. 

5.4.3. NOVA-W and PEST 
The stability codes NOVA-W and PEST require EQ's at both the integer and the half-integer s and X meshes. 

The integer grids are indexed st and Xk in Table 3, whereas the half-integer grids are labeled S~+l/2 and Xk+l/2. 
NOVA-W and PEST use a different length scaling than CHEASE, ERATO or MARS: all distances are given in 
meters, while RB¢ = T is normalized to unity in the vacuum. Therefore, the EQ's for these codes are rescaled 
(in a separate program processing the CHEASE output before use in PEST or NOVA-W) according to the 
following rules: 

t t 2 
PNOVA-W. PEST ----" PCHEASE / Rmaj, 

T;~ov^.w, PEST -- T' .E^SE/Rmaj ' 
t _ t 2 

qNOVA-W. PEST -- qCHEASE / Rmaj' 

(T/q) NOVA-W. PEST = Rmaj (T/q) CREASE, 

q'sovs-w.  PEST = R2m~j~CHEASE, 
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Table 4 
Equilibrium quantities for XTOR 

1 S Si, Sl+l/2 

2 ~l" st, st+ 1/2 
3 8s Sl, Sl+ 1/2 
3 p st, sl+ l/2 
3 p ' (g ' )  st, St+l~2 
4 T sl, sl+ 1/2 
5 TTt (~  lt) SI, Sl+l/2 
6 R (Sl. Xk), 
6 Z (s t ,Xk) ,  

( os ox o~ ox'~ 
7 j = 1 k 8t¢ az - TZ ate ! ( sl, Xk), 

8 gSS = os 2 ( ~ )  + ( a' ~ 2 ~,oz! (st, Xk), 
9 gSX as 8x as ox 

= ~at¢ + ~ a z  ( s t , xk ) ,  

lO 

11 g** = -~ (st, Xk ), 

(st+l~2, %k) 
(st+l~2,)6k) 

(Sl+i/2, Xk) 

(St+l/2, Xk) 

(S1+1/2, Xk) 

( Sl+l/2, ,¥k) 

(S1+1/2, Xk) 

RNOVA-W. PEST = RmajRCHEASE, 

ZNOVA-W, PEST = RmajZCHEASE , 

JNOVA-W. PEST = Rmaj JCHEASE, (37) 

where Rmaj is the major axis of the torus in meters. The EQ's in Table 3 are computed in subroutine OUTNVW 
by a method similar to the one used for the EQ's of ERATO in Section 5.4.1. 

5.4.4.  X T O R  

The resistive MHD nonlinear time evolution code XTOR [ 14] uses the radial flux coordinate (12) and an 
equidistant poloidal angle X equal to the geometrical polar angle for the discretization. The EQ's for XTOR 
are computed in subroutine OUTXT. A list of these quantities is shown in Table 4. Identical symbolic rules 
as in Section 5.4.3 are used for the indexation of the integer and half-integer grids. As for ERATO, PEST and 
NOVA-W, the scalings used in XTOR differ from the ones in CHEASE. Here, the equilibrium is first rescaled 
such that R B ~  is unity at the magnetic axis (see Section 5.3) and second that the minor axis of the torus is 
unity, i.e. 

~XTOR ~'~ A3~/tCHEASE 

( ~--S-)xToR=A3 (~)CHEAS E 

pXTOR = A2pCHEASE , 
I t 

P CHEASE / A PXTOR = 

TXTOR = A2TcuEASE, 
! t 

Tr io  R = ATTc.EASE, 

RXTOR = ARcHEASE, 

ZXTOR = AZcHEASE , 

JXTOa = JCnEAsE/ A 3 , 
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Fig. 3. Locations of PENN F-O's in a ( s , x )  cell. 

ss _ss I A 2 
gXTOR = gCHEASE/ ' 

sX 
gXTOR = _sx l a2 ¢gCHEASE / -''It , 

gXxXTO . = g~cXEAsE/ A 2 , 
~ _qo~b / a 2  

BXTOR = g C H E A S E / - ' ' 1  (38) 

where A = Rmaj/a is the aspect ratio of the torus. As for PEST and NOVA-W these transformations are not 
executed in CHEASE. 

5.4.5. PENN 
As XTOR, the global wave propagation code PENN [16] works in flux coordinates defined by Eq. (12) 

in the radial direction and the poloidal angle X equal to the geometrical polar angle. PENN uses a variational 
formulation in terms of the EQ's, 

OQ OQ 02Q 02Q 02Q 

Q '  ,OR ' OZ OR 2 OZ 2 OROZ (39) 

where Q = s(7,') or X. This variational form is integrated with a 4-point Gaussian quadrature in both s and X. 
The EQ's (39) are required at the Gauss quadrature points and the discretization cell nodes shown in Fig. 3. 
The derivatives of X are expressed as 

e~---~ = - - ( Z  -- Zmag ) , 

g ~  = R - Rmag, 

g - ~ 2  02/tv = 2(Z - Zmag ) (R - Rmag) 

£ ~ - ' ~  = 2 d 2 X  - 2 ( Z  --  Z m a g ) ( R  - Rmag) 

g2 0 2 X  = ( Z  - Zmag) 2 - (R - Rmag) 2 (40) 
OROZ 
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where £ = (Z - Zmag)2 + (R - Rmag)2 and (Rmag, Zmag) are the coordinates of the magnetic axis. No particular 
scaling is required for the EQ's. PENN needs an equilibrium solution with continuous second derivatives, which 
is one order higher than what is provided by the cubic Hermite dements. Therefore, the equilibrium solution 
is smoothed using bicubic spline functions in subroutine SMOOTH. The bicubic spline interpolation of the 
bicubic Hermite solution is documented in Appendix C. All the equilibrium quantities for PENN are computed 
in subroutine OUTPEN. 

5.4.6. EQDSK input/output file 
The file EQDSK, which is the standard input/output file for e.g. the equilibrium code EFIT [ 17], has the 

following format (all the variables in upper-case letters below are Namelist variables in CHEASE, see Section 
6.3): 

write(format=(a48,3i5) ) ' comments and date', i3, NRBOX, NZBOX 
wnte(format=(5el6.9 )) RBOXLEN, ZBOXLEN, ROEXP, RBOXLFT, zero 
wrlte(format=(Se16.9 )) RAXIS, ZAXIS, PSIAXIS, zero, BOEXP 
wnte(format=(5el6.9 )) CURRENT, PSIAXIS, zero, RAXIS, zero 
wrlte(format=(5el6.9 )) ZAXIS, zero, zero, zero, zero 
wrlte(format=(5el6.9 )) (TMKsA(i), i = I,NRBOX) 
wrlte(format=(5el6.9 )) (pMKsA(i), i = 1,NRBOX) 
wnte(format=(5el6.9 ) ) (T/'~KSA(i), i = 1,NRBOX) 
wnte(format=(5el6.9 ) ) t • (pMKSA(I), i= 1,NRBOX) 
wnte(format=(5el6.9 ) ) ( (~(Ri,  Zj), i= I,NRBOX),j = 1,NZBOX) 
wrlte(format=(5el6.9 ) ) (q(i) ,  i = 1,NRBOX) 
wrlte(format=(2i5 )) npbound, nlimiter 
wrlte(format=(5el6.9 )) (rbound(i), zbound(i), i = 1,npbound) 
wnte(format=(5el6.9 )) (rlimiter(i), zlimiter(i), i = 1, nlimiter) 

where i3--3, zero=0., (RAXIS, ZAXIS) is the position of the magnetic axis, CURRENT is the total plasma 
current, PSIAXIS=(~max - ~min). The poloidal flux is given for an equidistant (R, Z)  mesh, with (NRBOX - 1 ) 
and (NZBOX- 1 ) intervals and so that 

rmin = RBOXLFT 
rmax = RBOXLFT + RBOXLEN 
zmin = - ZBOXLEN / 2 
zmax = ZBOXLEN / 2 

The limiter boundary is set to this (R, Z) rectangle. The profiles T, p, TT t and p~ are given for an equidistant 
mesh in ~ with (NRBOX- 1) intervals. All the quantities are given in MKSA. Thus the CHEASE variables 
are transformed using the Namelist variables ROEXP and BOEXP specified in meters and Tesla, respectively, 
as follows: 

R = RCHEASE * ROEXP, 

Z = ZCHEAS E * ROEXP, 

= ~/ICHEASE * ROEXP 2 * BOEXP,  

I --, ICHEASE * R O E X P  * BOEXP/p.o, 

T = TCHEASE * ROEXP * BOEXP, 

P ----- FCHEASE * BOEXpE/tzO, 

TT" = T'FCHEASE * BOEXP, 

e l  = PCHEASE * BOEXP/ (Izo * ROEXP 2) , 

Administrateur
Texte surligné 

Administrateur
Note
ZBOXMID
(5th element of 2nd line)
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/.to =47r × 10 -7 . (41) 

Before computing an equilibrium with CHEASE by reading experimental data in an EQDSK file (see Section 
6.4.1), it is of most importance to check if the experimental equilibrium was obtained assuming To = 1 or 
Tedge = 1 by comparing the value of ROEXP*BOEXP and To, and to prescribe the CHEASE Namelist parameter 
NTMF0 accordingly as described in Section 6.4.4. 

5.5. Iteration over pl f o r  the bal looning optimization and the specification o f  the bootstrap current 

The ballooning optimization (BO) and the specification of the bootstrap current (SBC) are directed by 
subroutine BALLIT. These options require the mapping of the equilibrium into flux coordinates because the the 
stability criteria (16), (19) and (20) or the flux surface integrals (23) and (44) must be evaluated at every 
iteration over the pr profile (see Fig. 2). 

For the ballooning optimization, the pressure profile is modified iteratively in subroutine PPRM according to 
the following algorithm: 
o D o  for qt j , j  = 1 ..... N~v: 

r Po,j, J = 1 . . . .  N . ,  given as in Section 6.4.2. 
t~p; ' = PO,j" 
AO,j = 1. 
6aO,j = O. 1. 

* Do for k = 0 until convergence 
Do for a chosen set of poloidal flux surfaces ~Fj,j = 1 ..... Nv: 

(i) Solve the Grad-Shafranov equation (3) with a coarse discretization grid. 
(ii) Scale equilibrium solution according to Section 5.3. 

(iii) Compute the Ballooning and Mercier stability criteria (16), (19) for every ~j.  
(iv) If flux surface j stable at step k and unstable at step k + 1 or vice-versa: 6Ak+l,j = 18Ak,j. 

If flux surface j stable at steps k and k + I: ~Ak+l,j = 68Akj. 
(v) If flux surface j unstable at step k + 1: Ak+l,j = Ak,j -- 6Ak+l,j. 

If flux surface j stable at step k + 1: Ak+l.j = ,,lk,j + 6hk+l.j. 
(vi) P~+l,j = ,tk+l,jrp~. 

rk+l,j = [P~+l,j - P;,4 I. 
If P~+Ij > 0 then P~+I,j = O. 
If p~,j =0  and P~+l,j > -5 .10-3  then I Pk+l,j  = O. 

End Do 
Error = max (rk+l,j, for j = 1 .... N~). 
if Error < • exit do loop. 
k = k + l .  

End Do 
o Compute equilibrium with refined discretization mesh and optimized p~ profile. 
In order to prevent an uncontrolled excursion of the optimization when the equilibrium enters the second region 
of stability for ballooning modes (this usually occurs when the magnetic shear is small or negative, i.e. typically 
in the central region of the plasma), p '  is restricted so that 

Ip ' (~ ) l  < a l l q ' ( ~ ) l ,  (42) 

where A1 is a user-defined constant. 
Frequently, a ballooning optimized equilibrium is unstable against MHD modes of low toroidal mode number 

n [27]. Therefore CHEASE contains the option of rescaling the ballooning optimized pl profile by a user- 
defined factor A2. This can be used to find equilibria stable against local as well as global MHD modes. 

(vii) 
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For the SBC, the p/profile is adjusted iteratively in subroutine PPBSTR so that 

, ( J -B)bs (S ) ,  
P~+l (s)  = C ( s )  -(J"B-----)-~ t'k(s) ' (43) 

where ( J .  B)bs is given by Eq. (23) and 

(J  . B) = - T p '  (~F ) - T'(qt) (B2). (44) 

The total toroidal current from bootstrap is then computed as 

f (J. a)bs: Ibs = -0"-'-~) J~ dS .  (45) 
Yl 

The BO and the SBC are performed with the coarse equilibrium discretization mesh defined in subroutine 
EQDIM and a reduced set of radial surfaces Sopt (the number of flux surfaces for the ballooning optimization 
NPPR is usually taken as 30, but this number can be modified in the Namelist). The Gaussian quadrature 
for the integration of (26) or the computation of the EQ's for the stability codes uses p' at different radial 
locations than the Sopt grid. In a similar manner as for the I* or the Ill profiles defined in Section 2.2, these 
quantities are interpolated with cubic spline functions on the Sopt mesh. For both types of automatic generation 

pl of the pressure profile, the iteration over p~ is stopped when II - p~, l l  < e. 

5.6. I /0  files 

An overview of all I /O files of CHEASE is shown in Fig. 4, and their characteristics and contents are given 
in Table 5. These files can be subdivided into three categories. First, the files which intervene in the equilibrium 
calculation itself (Namelist EQDATA, NIN, NOUT, EXPEQ, EQDSK), second the equilibrium diagnostic files 
(Output, NUPLO) and last the files used as input by the codes linked to CHEASE. The Namelist EQDATA is 
described in details in Section 6.3 and the EXPEQ files in Sections 6.4.1 and 6.4.2. 

The I /O files NIN and NOUT allow the user of CHEASE to take advantage of the equilibrium scaling laws 
described in Section 5.3. Every quantity required for the reconstruction of the converged solution of Eq. (26) 
is stored into the file NOUT before the rescaling of the equilibrium. This file can be reutilized for a subsequent 
equilibrium calculation which only differs from the first by another scaling in Section 5.3. If NOPT ~ 0 in the 
Namelist, CHEASE reads an equilibrium from the file NIN, which is organized in an identical way to NOUT. 

CHEASE produces the disk file EXPEQ.OUT which stores the equilibrium boundary and profile data in the 
same format as in EXPEQ (boundary and equilibrium profiles specified by a set of data points). However, 
different ways of current profile specification (TT ~, I* or 111) can be used on the two files. This makes it 
possible to switch between different current specifications, which is useful, e.g., when experimental equilibria 
are analyzed. 

6. Direct ions for the users of  C H E A S E  

6.1. Sizing the arrays 

The dimensions of the arrays in CHEASE are controlled in every case by two different quantities. First, 
parameters are used to dimension arrays of the executable. These give upper limits for the dimensions of a 
run. The parameters have the syntax NPxx, where xx is a suffix which may contain one or more characters 
or numbers. Second, dimensioning variables are determined for every run (without recompilation) from the 
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Table 5 
I/O disk files: characteristics and contents 
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File Unit number Def Format Stat Content 

Namelist 5 5 Namelist def. CHEASE Namelist EQDATA 
Output 6 6 formatted def. 
INPI INPI 46 unformatted def. EQ's for NOVA-W or PEST 
NIN NIN l 0 unformatted old read equilibrium; used only if NOPT ~ l 
NOUT NOUT 11 unformatted new store equilibrium 
MEQ MEQ 4 unformatted new EQ's for ERATO 
NDES NDES 16 u. ( ERATO ) new plot EQ's for 

f.(MARS) new ERATO or MARS 
NVAC NVAC 17 unformatted new vacuum EQ's for ERATO 
NSAVE NSAVE 8 formatted new ERATO Namelist NEWRUN 
EQU01 NO 21 formatted new EQ's for MARS 
ETAVAC NETVAC 23 formatted new vacuum EQ's for MARS 
NUPLO NUPLO 33 formatted new plot quantities 
EXPEQ NXIN 48 formatted old experimental equilibrium 
EXPEQ.OUT NXOUT 50 formatted new restore experimental data 
NPENN NPENN 49 unformatted new EQ's for PENN 
OUTXTOR NXTOR 37 unformatted new EQ's for XTOR 
EQDSK IEQDSK 38 formatted new EQDSK I/O file 

Equilibrium 

solver 

Mapping 

for XTOR 

Fig. 4. I /0  files of CHEASE. 
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Table 6 
Dimensioning parameters 
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Parameter Corresp. namelist Definitions 
variable 

MPSMAX MSMAX 
NPBLC0 NBLC0 
NPBPS NBPS 
NPCHI NCHI 
NPISO NISO 
NPPSI NPSI 
NPS NS 
NPSMAX NSMAX 
NPT NT 
NPTURN NTURN 
NPV NV 
NPSGS NSGAUS 
NPTGS NTGAUS 
NPMGS NMGAUS 
NPPSBAL none 
NPPSCUB none 
MFLGERL none 
MFLGMAR none 
MFLGNVW none 
MFLGPEN none 

Number of poloidal Fourier modes for MARS. 
Number of integration constants X0 in the ballooning integral. 
Number of (R, Z) nodes for the definition of experimental plasma boundary. 
Number of x-intervals for ERATO and ballooning stability calculation. 
Number of s-intervals to define l*(s) or 111 (s). 
Number of s-intervals for stability calculation. 
Number of tr-intervals for equilibrium calculation. 
Number of toroidal Fourier modes for MARS. 
Number of 0-intervals for equilibrium calculation. 
Number of 2~r-intervals for ballooning integration. 
Number of radial vacuum s-intervals for MARS. 
Number of Gaussian quadrature points in tr-direction. 
Number of Gaussian quadrature points in 8-direction. 
Number of Gaussian quadrature points along constant-,/" surface. 
Number of q~ surfaces where ballooning criterion is computed in parallel. 
Number of qt surfaces traced in parallel. 
Controls extra memory space required by mappings for ERATO and LION. 
Controls extra memory space required by mapping for MARS. 
Controls extra memory space required by mappings for NOVA-W and PEST. 
Controls extra memory space required by mapping for PENN. 

Namelist input. The values of these variables are checked in subroutine COTROL, and the program automat- 

ically stops if one of them is larger than its corresponding parameter. A list and the description of all the 
dimensioning parameters and variables is given in Table 6. The quantities NPMGS, NPSGS and NPTGS and 

their corresponding variables are usually set to 4, which implies that 4 Gaussian quadrature points are used per 

integration interval for the computation of the variational form (26) and the flux surface integrals (6) ,  (9) ,  

(15) ,  etc. Extensive use of the code has shown that this is the best choice in terms of cpu time and memory 

requirements. 
With the 6 last parameters in Table 6, the memory requirements of the code can be reduced. The worst 

(resp. best) vector performance is obtained when NPPSBAL = NPPSCUB = 1 (resp. NPPSI+ 1 ). The MFLGxxx 

parameters are flags which control the memory requirements for the different mappings produced by the code. 

If the user sets one of them to 0, every array required by the corresponding mapping is sized to 1. Default 
values for these parameters are NPPSBAL =NPPSCUB = 10 and MFLGxxx = 1. 

Table 7 
Include files: statement functions 

Include file Content 

BNDIND.inc 
CUCCCC.inc 
CUCDCD.inc 
HERMIT.inc 
QUAQDQ.inc 
QUAQQQinc 
SOLOV.inc 

horizontal band matrix indexes 
cubic Lagrange interpolation 
cubic Hermite interpolation 
I-D Hermite basis functions 
quadratic interpolation with I derivative 
quadratic Lagrange interpolation 
analytic Solovev equilibrium 
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Table 8 
Include files: common blocks 

Include file Content Memory requirement (64 bit Words) 

COMDIM.inc 
COMBAL.inc 
COMBLA.inc 
COMBND.inc 
COMCON.inc 
COMDAT.inc 
COMEQD.inc 
COMERA.inc 
COMESH.inc 
COMETA.inc 
COMINT.inc 

COMIOD.inc 
COMISO.inc 

COMLAB.inc 
COMMAP.inc 

COMNUM.inc 
COMPHY.inc 
COMPLO.inc 
COMSOL.inc 

COMSUR.inc 
COMVAC.inc 
COMVEV.inc 

NEWRUN.inc 
PROCESS.inc 

Dimensioning parameters 
Quantities for ballooning calculation 
Equilibrium matrix and RHS 
Plasma surface parameters 
Control parameters 
Equilibrium Namelist 
EQDSK output quantities 
ERATO equilibrium quantities 
Mesh quantities 
MARS equilibrium quantities 
Quantities for integration of 
equilibrium variational form 
I/O control parameters 
Quantities required for evaluation 
of flux surface integrals 
Labels for equilibrium 
Values of flux surface integrals 
at equilibrium cell boundaries 
Dimensioning variables 
Physical quantities 
Plot quantities 
Control quantities for 
equilibrium solver 
Flux surface quantities 
Vacuum quantities for MARS 
Quantities computed for 
Solovev equilibria only 
ERATO Namelist 
Free deck for IBM extended 
memory commands 

67 
4*NPPSBAL* (NPTURN*NPCHI+ 1 ) +NPBLC0* (43*NPPSI+ l ) 
16*NPT* (NPT+5) * (NPS+ 1 ) 
11 *NPBPS+40 
33 

(NPPSI+ 1 )*'2+5 
34*NPCHI* (NPPSI+ 1 ) 
2*NPCHI* (NPMGS+2) +5*NPPSI+2* (NPS+NPV+2*NPT) + 163 
19*NPT*NPMGS+(NPPSI+ ! )* (MPSMAX* (52+24*NPSMAX)) 
NPSGS*NPTGS* {4*NPT* (4*NPS+ 1 )+3}+NPS*(NPT+20) 

17 
2" (NPT+ 1 ) *NPMGS* ( 16*NPPSI+ 17) 

5 
2*NPCHI* (NPPSI+NPMGS+ 18*NPT+ 10) 

31 
188 
(NPPSI+ 1 )* (NPCHI+8) + 1 
13 

I 19" (NPPSI+ 1 ) 
16* (NPV+ I ) *MPSMAX 
I I*NPT* (NPS+ 1 )+4 

6.2. Include f i les 

Commons  and statement functions are used extensively throughout CHEASE. All  commons and statement 
functions are coded in separate files and inserted at the compilation with include statements. Therefore, a 
new variable can easily be added to a common by modifying the appropriate include file and the include 
file COMDIM.inc  (where the common length are specified for the initializations in subroutine CLEAR at 
the beginning of  every run).  The include files containing statement functions are listed in Table 7, and those 
containing common blocks are shown in Table 8. Table 8 also gives the dimensions of  all the commons in 

terms o f  the dimensioning parameters in Table 6. 

6.3. Namelis t  variables 

The quantities characterizing an equil ibrium can be modified in the Namelist.  The Namelist  statement is not 
standard FORTRAN,  but is implemented in most computers. CHEASE reads the Namelist  from input channel 
5, which must have the fol lowing form: 

**** 4 character lines of  maximum length 80 
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Table 9 
Namelist EQDATA 
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Variable Type Def. Definitions 

AFBS,AFBS2 
AP, AP2 
APLACE,BPLACE, 
CPLACE,DPLACE, 
EPLACE 
ASPCT 
AT, AT2,AT3,AT4 
AWIDTH,BWIDTH, 
CWIDTH,DWIDTH 
EWIDTH 
BEANS 
BSFRAC 
BOEXP 
CETA 
CFBAL 
COMPTYP 
CPRESS 
CQO 
CSSPEC 
CURRT 
DELTA 
ELONG 
EPSLON 
ETAEI 
GAMMA 
PREDGE 
PS1SCL 
QSPEC 
QPLACE 

RA's 10"0. Coefficients used for definition of bootstrap current profile; only used if NBSOPT = 1 or 2 
RA's 10"0. Coefficients used for definition of p ' ( s )  profile 
RA's 10"0. Localizations where respectively stability-s, profile-s, tr, 0 and X mesh is densified 

R 1/3 Inverse aspect ratio of plasma 
RA's 10"0. Coefficients used for definition of TT'(s) ,  l*(s) and lll(S) profiles 
RA's 10'0. Width of mesh densification at APLACE, BPLACE, CPLACE, DPLACE, EPLACE, respectively 

R 0. Indentation of plasma surface 
R 0.5 Fraction of bootstrap current; only used if NBSOPT = 1 and NBSTRP = 2 
R 1. Magnetic field at magnetic axis in Tesla for EQDSK 
R 0. Boundary parameter (see Eqs. (49), (50)) 
R 1. Coefficient which limits pressure profile when NBLOPT= 1 or NBSOPT= l 
A cray Selects time and date routines specific to Cray, Sun or Silicon Graphics 
R 1. Coefficient which rescales ballooning optimized or experimental pressure profile 
R 0.75 Solovev equilibria: safety factor at magnetic axis; only used with NSURF= 1 
R 0. s or p value where q is specified when equilibrium is scaled; only used if NCSCAL= 1 or 3 
R 0.5 Total plasma current, CHEASE normalization 
R 0. only used if NSURF=4 (see Eq. (50)) 
R 1. Elongation of plasma cross section 
R 10 -9  Precision required for equilibrium solution 
R 3/2 17i = dlogTe/dlogn; only used if NBSRTP = 1 
R 5/3 Ratio of specific heat 
R 0. Pressure at plasma boundary of experimental equilibrium 
R 1. Fraction of equilibrium poloidal flux kept for stability calculation 
R 1. Specified q-value for scaling of equilibrium; only used if NCSCAL = 1 or 3 
RA 10'0. q-values where stability s-mesh is densified 

&EQDATA 
List of  Namelist variables for CHEASE. 
&END 
&NEWRUN 
List o f  Namelist variables for ERATO. 
&END 
The 4 character lines are used to label the run and must imperatively exist at the beginning of  input channel 

5, even if they remain blank. They will appear at the beginning of  the output file on channel 6 and in the plots. 
An example of  a run output is given in Section 7. A list of  all Namelist variables, including their description, 
default value and type is given in Tables 9-12. Directions for the specifications of  these variables are given in 
the next section. 
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Table 10 
Namelist EQDATA 

Variable Typ. Def. Definitions 

QWIDTH RA 10'0. 
RBOXLEN R 1.6 
RBOXLFT R 1.5 
RC R 1. 
REXT R 1. 
RELAX R 0. 
RNU R 0. 
RZION R 1. 
R0,RZ0 R's 1 .,0. 
R0W, RZ0W R's 1 .,0. 
ROEXP R 1. 
SGMA R 0. 
SOLPDA,SOLPDB, R's 5*0. 
SOLPDC,SOLPDD, 
SOLPDE 
THETA0 R 0. 
TRIANG R 0.3 
TRIPLT R 0. 
XI R 0. 
ZBOXLEN R 1.5 
MSMAX I 10 
NANAL I 0 
NBAL I 1 
NBLC0 I 16 
NBLOPT I 0 
NBPSOUT I 300 
NBSFUN I 1 
NBSOPT I 0 
NBSTRP I 1 

As AWIDTH, but relative to QPLACE 
R length of (R,Z) box used to save equilibrium in EQDSK 
Rmin of (R,Z) box used to save equilibrium in EQDSK 
Centre of plasma boundary (if NSURF=6) 
Vacuum radius for ERATO and MARS 
Under-relaxation parameter used if magnetic axis converges slowly 
Only used if NSURF=4 (see Eq. (50)) 
Ion charge in bootstrap current formula; only used if NBSTRP = 1 
(R, Z)  position of equilibrium mesh centre 
( R, Z) position of MARS vacuum mesh centre 
Major radius of magnetic axis in meters for EQDSK 
Boundary parameter (see Eqs. (49), (50)) 
Fraction of mesh, corresponding, respectively, to APLACE, BPLACE, CPLACE, 
DPLACE, and EPLACE, which is kept equidistant 

Angular position of X-point if plasma surface is defined with NSURF = 4 (see Eq. (50)) 
Triangularity of plasma cross section 
Only used if NSURF=4 (see Eq. (50)) 
Boundary parameter (see Eq. (49)) 
Z length of (R,Z) box used to save equilibrium in EQDSK 
Number of poloidal modes for MARS 
Flag for analytic Solovev equilibrium 
Flag for solution of ballooning stability 
Number of values used for integration constant X0 in ballooning stability criterion 
Flag for ballooning optimization 
Number of plasma boundary points saved in EXPEQ.OUT 
Selects type of functional to define bootstrap current 
Flag for bootstrap specification 
Selects relation between parallel and bootstrap current 

6.4. Setting up an equilibrium 

6.4.1. Specification of the plasma boundary 
Several methods are implemented in CHEASE for the specification of the plasma boundary (5/2 (see Fig. l ). 

The boundary calculation is executed in subroutine BOUND, and the different boundary definitions are selected 
by means of the Namelist parameter NSURF. 

The first family of solutions is obtained by setting NSURF= 1. This choice leads to a class of the analytic 
Solovev equilibria [ 31 ]. These equilibria are characterized by 

1 + K  2 

Kn3o---- o 
T(~F) = To = 1 (46) 

(so that the Grad-Shafranov equation becomes linear in ~u). ~u is given by 

K (R2z 2 ) = ~  ~ , ~ + I ( R  2-R0 2)2_a 2R 2 . (47) 
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Table 11 
Namelist EQDATA 
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Variable Typ. Def. Definitions 

NCHI 
NCSCAL 
NDIFPS 
NDIFI" 
NEGP 
NEQDSK 
NER 
NFFTOPT 
NFUNC 
NIDEAL 
NINMAP 
NINSCA 
NIPR 
NISO 
NMESHA,NMESHB, 
NMESHC,NMESHD, 
NMESHE 
NMGAUS 
NOPT 
NPLOT 
NPOIDA,NPOIDB, 
NPOIDC,NPOIDD, 
NPOIDE,NPOIDQ 
NPP 
NPPFUN 
NPPR 

l's 

I 
I 
I 
l's 

100 
2 
1 
1 
-1  
0 
1 
0 
1 
0 
20 
20 
1 
100 
0. 

4 
0 
1 
0. 

I 0 
1 1 
I 3 0  

NPROPT ! 1 
NPRPSI I 0 
NPSI I ! 00 
NRBOX I 33 
NRSCAL I 0 

Number of poloidal nodes for ballooning, ERATO stability meshes and MARS mapping 
Selects equilibrium scaling law 
Flag for automatic packing of stability s-mesh 
Selects automatic equilibrium 0-mesh packing 
IV'k" I exponent in flux coordinate Jacobian J 
Flag for reading EQDSK file. Set NSURF= 6 & NEQDSK = 1 when EXPEQ = EQDSK 
R exponent in flux coordinate Jacobian J 
Flag for computing MARS EQ's with FFT's 
Selects functional form used to define TT ~ (s), I* (s) or 111 (s) profile 
Selects mapping 
Max. number of iterations over current profiles 
Max. number of iterations over nonlinearity 
Selects functional form of s(g') for I* (s) or 111 (s) profiles if NSTTP= 2 
Number of s-intervals to define 1" ( s ) or 111 ( s ) 
Flags for densification of mesh corresponding, respectively, to APLACE, BPLACE, 
CPLACE, DPLACE, EPLACE 

Number of Gaussian quadrature points used for integrations along constant flux surfaces 
Flag for reading stored equilibrium 
Flag for production of plot quantifies 
Number of locations where mesh corresponding to APLACE, BPLACE, CPLACE, 
DPLACE, EPLACE, QPLACE is densified 

Selects functional form of sO/') for i f(s) profile 
Selects functional form of i f ( s )  profile 
Number of s-values where p'(s) is modified during ballooning optimization 
or specification of bootstrap current density 
Selector for reading experimental TT', 1" or Iii 
Flag for printing equilibrium solution 
Number of radial stability-s intervals 
Number of R points used to save equilibrium in EQDSK 
Flag for rescaling distances so that Rmag = 1 

In Eq. (46)  K denotes the elongat ion,  R0 the major  plasma radius (which  is equal  to 1 per  default  in C H E A S E ) ,  

a the mino r  radius  o f  the torus and q0 is the safety factor at the magnet ic  axis. The p lasma boundary  is given 

by 

R = Ro( 1 + 2eaCOSO) 1/2 , 

Z = RoeaKsinO (48)  
( 1 + 2e~cos0)  1/2 " 

These equi l ibr ia  are de termined by ea = a/Ro = ASPCT, R0 = RC, K = E L O N G  and q0 = CQ0 which are all 
prescribed in the Namelist .  The first test case in [ 1] is obtained with A S P C T  = 1/3,  E L O N G  = 1 and CQ0 = 3 /4 .  

Second,  the boundary  can be specified by a general ized form of  the INTOR  formula,  

R = Ro + Ro?tf(O)cos(O + 8sinO - ~:sin20) ( 1 + b c o s O ) ,  

Z = Ro~Ksin(O + ( s i n 2 0 ) .  (49)  

Here 
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Table 12 
Namelist EQDATA 

Variable Typ. Def. Definitions 

NS 
NSGAUS 
NSMOOTH 
NSOUR 
NSTTP 
NSURF 
NSYM 
NT 
NTCASE 
NTGAUS 
NTNOVA 
NTEST 
NTMF0 
NTURN 
NV 
NVEXP 
NZBOX 

40 
4 
1 

0 
1 

1 

0 
40 
0 
4 
64 
0 
0 
10 
20 
0 
65 

Number of radial equilibrium-tr intervals 
Number of Gaussian quadrature points used for equilibrium integration in radial direction 
Flag for bicubic spline smoothing of equilibrium solution 
If NFUNC = l or NPPFUN = I, degree of polynomial used to define corresponding profile 
Selects TTt(s), l*(s) or Iii (s) profile 
Selects shape of plasma surface 
Flag for symmetric/asymmetric versionof ERATO 
Number of poloidal equilibrium-0 intervals 
Selects pre-defined test cases 
Number of Gaussian quadrature points used for equilibrium integration in poloidal direction 
Number of poloidal-X intervals used by NOVA-W, PEST and XTOR 
Check accuracy of numerical Solovev equilibrium 
Selects equilibrium scaling law for T 
Number of poloidal turns left and right of X0 for integration of ballooning integral 
Number of radial s-intervals in MARS vacuum 
Flag for exponential packing of MARS vacuum s-mesh close to plasma surface 
Number of Z points used to save equilibrium in EQDSK 

b" 
f(O) = 1 + u (50) 

l +  [sin2(½(0-00))÷~] /A 

can be used to prescribe a "bump" on the plasma surface [32]. The standard INTOR formula is obtained when 
6" = s c = ( = 0. The minor radius ~ in Eq. (49) is obtained by demanding that the inverse aspect ratio 

a Rmax - -  Rrnin 
ea = - -  = ( 5 1 )  

R0 Rmax + Rmin 

is equal to the Namelist parameter ASPCT. Here, Rmin and Rmax denote the minimum and the maximum 
R values of the plasma boundary, respectively. The definition (49) groups together two different options in 
CHEASE. 
• If  NSURF=2,  then f(O) - 1, and therefore plasma boundaries defined by Eq. (49) lead to equilibria 

symmetric about the Z = 0 plane. In this case, the plasma boundary is entirely determined by the Namelist 
parameters RC = R0, TRIANG = t~, ELONG = K,  ASPCT = a/Ro, BEANS = b, XI = ~: and CETA = ( .  

• If  NSURF=4,  s ¢ = 0 and s r - 0, and the boundary shape is in general asymmetric about the Z = 0 plane. The 
following Namelist variables determine the plasma boundary: RC -- R0, TRIANG = & ELONG =K,  ASPCT 
= a/Ro, BEANS -- b, THETA0 -- 00, RNU = v, XI = if, SGMA = O" and DELTA = A. 
Last, the plasma boundary is specified by a set of experimental (R, Z)  coordinates if NSURF=6.  If  

NEQDSK = 0, these data are read in file EXPEQ in the following format: 
read(48,998) np 
read(48,999) (rbound(i),  zbound(i), i = 1,np) 

998 format(i5) 
999 format(2el8.8) 

The boundary information required by CHEASE is computed with cubic spline interpolations of these data in 
subroutines BNDSPL and BOUND. I f  NSURF=6 and NEQDSK= 1, the data are read in an EQDSK file as 
described in Section 5.4.6. 

OS
Note
nsttp=1: TT', 2: Istar, 3:I//, 4:<j.B>/B0, 5:q (new functionalities)
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Table 13 
Definition of p '  with NPPFUN =2 

Definition NPP = 1 NPP = 2 

t 1 ~ ( I  - ~ ]1 /2  
~min 

tl AP(l) AP2(l) 
t2 AP(2) AP2(2) 
-p'(t2) AP(3) AP2(3) 
-p l t ( t l )  AP(4) AP2(4) 
-p'(O) AP(5) AP2(5) 
- p ' ( l )  AP(6) AP2(6) 
-p"(t2) AP(7) AP2(7) 
free AP(8) AP2(8) 
free AP(9) AP2(9) 
free AP(10) AP2(10) 

6.4.2. Specification of the pressure and current profiles 
The analytic forms used to specify the current profile are functions of the normalized flux 1 - ~/~min • The 

profiles are computed in subroutine PREMAP. The p '  profile is calculated in subroutine PPRIME, and the TT', 
I* and III profiles in subroutine PRFUNC. If I* or 111 are specified, or the profiles are given in terms of sets 
of experimental data, the values of p '  and/or 7T' required for the integration of the source term in Eq. (26) 
are obtained by cubic spline interpolations. The functional forms used for the specification of these profiles can 
easily be modified by the user. 

Pressure profile 
Three different functional forms are currently available for the definition of the p '  profile. 

• First, pt can be specified as a polynomial of degree NSOUR- 1 by setting NPPFUN = 1, 

NSOUR ( ~/¢ ~( i -1)  

p'(g') = y ~  AP(i) 1 - ~nanJ " (52) 
i=1 

NPPFUN, NSOUR and AP are Namelist variables. 
• Second, if NPPFUN = 2, p '  is given by a combination of polynomials on three different subintervals of 

[0, 1], such that p '  and its first derivative are continuous. Let t stand for 1 -~g/~min if NPP= 1, and for 
(1 -~ /9 tmin)  1/2 if NPP=2 in the following. The functions defined by polynomials in three sections are 
defined as follows. For t E [0, t l] ,  p'(t) is linear, for t E [tl,  t2], p'(t) is cubic and for t E [t2, 1], p'(t) is 
quadratic. In the present version of CHEASE, p '  (t) can be specified as a superposition of two such functions 
composed of polynomials in three sections. Table 13 shows an overview of the Namelist parameters used for 
the specification of the two functions. 

• Third, if NPPFUN = 3, p '  is given as 

Table 14 
Definition of p '  with NPPFUN=3 

Definition Namelist variable 

Po AP(I) 
a AP(2) 
B AP(3) 
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p, (gr)  =P0 1 - 1 - gsrmn (53) 

The Namelist parameters used for the definition (53) are given in Table 14. 
• If NPPFUN=4, pt is given by a set of data points. If NEQDSK=0, these data are read in the file EXPEQ 

in the following format: 
read(48,998) NPPF1, N s T r P  

read(48,999) (FCSM(i) ,  i= 1,NPPF1) 

if (NPPFUN.Eq. 4) read(48,999) (RPPF(i),  i--1,NPPF1) 

if (NFUNC.Eq. 4) read(48,999) (RFUN(i),  i--1,NPPF1) 

998 format(i5) 

999 format( le l  8.8) 
If NSURF=6 (i.e. the plasma boundary is specified by a set of points), the data for the profiles must be 
stored after  the boundary coordinates in EXPEQ. NPPF1 is the number of radial s = (1 - gt/gtmin)1/2 grid 
points for which the profiles are specified. These s-values are stored in FCSM and the corresponding pl 
values in RPPE The contents of RFUN will be described later in this Section. If NEQDSK = l, the data for 
p' are read in file EQDSK (see Section 5.4.6). 

Current profiles 
The choice of the current density specification (see Section 2.2) is controlled by means of the Namelist 

parameter NSTFP in subroutine ISOFUN. If NSTrP = 1, 2 or 3, je  is specified in terms of TT r, I* or ILl, 
respectively. In the following, let F stand for TF I, 1" or Ill. Several functional forms are implemented in 
CHEASE for F. The choice is controlled by the Namelist parameters NFUNC and NIPR and the profiles are 
computed in subroutine PRFUNC. 
• If NFUNC = l, F is given as a polynomial of degree NSOUR- 1 and with coefficients AT(i), i= 1 ..... NSOUR, 

in a similar way as pt in Eq. (52). 
• If NFUNC--2, F is a superposition of three functions which all are composed of polynomials in three 

sections, with a continuous first derivative. The functions for the current profiles are defined differently than 
those for p'. Let t stand for 1 - ~/qtrmn if NIPR = 1, ( 1 - gt/Wmin) 1/2 if NIPR = 2, and ( 1 - gt/gtr~n) 1/4 if 
NIPR=3. For t E [0, t l ] ,  F(t )  is quadratic, for t E [t l , t2] ,  F(t )  is cubic and for t E [t2, 1], F(t )  is linear. 
Moreover, a Gaussian defined by 

I = - , ( 5 4 )  
\ W g /  

where t = 1 - gt/gtmin can be added to the previous 3 functions by setting NIPR=4. Table 15 shows an 
overview of the Namelist parameters used for the specification of these functionals. 

• If NFUNC=3, F is given in an analogous way as Eq. (53). In that case, the F profile is specified as p '  in 
Table 14 with the Namelist array AT instead of AP. 

• Last, if NFUNC = 4, F is given by a set of experimental data, which are read from the file EXPEQ into 
the array RFUN with the same format as discussed for pt if NEQDSK =0, and from the file EQDSK if 
NEQDSK= 1 (see Section 5.4.6). 

6.4.3. Control parameters for the ballooning optimization and the specification of the bootstrap current 
The ballooning optimization (BO) is activated by setting the Namelist variable NBLOPT to 1. The initial pt 

profile is specified as in Section 6.4.2. CFBAL is the coefficient A1 which limits p~ according to F_,q. (42). The 
converged optimized equilibrium is stored into the disk file NOUT. It is emphasized here that the ballooning 

OS
Note
NPPFUN=4 for pprime as array and NPPFUN=8 for pressure as array in input
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Table 15 
Definition of F with NFUNC = 2 

Definition NIPR = 1 NIPR =2 NIPR = 3 NIPR =4  

'~ ( l - ~ )  '/~ ( l - ~ ,  t I ~min 
ti AT( 1 ) AT2( 1 ) AT3( 1 ) 
t2 AT(2) AT2(2) AT3(2) 
F (0 )  AT(3) AT2(3) AT3(3) 
F '  (0) AT(4) AT2(4) AT3(4) 
F~(ti ) AT(5) AT2(5) AT3(5) 
F(  1 ) AT(6) AT2 (6) AT3 (6) 
F'(t2) AT(7) AT2(7) AT3(7) 
free AT(8) AT2(8) AT3(8) 
free AT(9) AT2(9) AT3(9) 
free AT(10) AT2(I0) AT3(10) 
tg 
Wg 
hg 

l 9, 
ii~mi n 

AT4(1) 
AT4(2) 
AT4(3) 

stability is affected by the equilibrium transformations in Section 5.3. However, in order to obtain an equilibrium 
globally stable to every MHD modes if the ballooning optimized equilibrium is not, it is possible to recompute 
an equilibrium with the optimized p~ profile rescaled by a factor A2 = CPRESS. 

For the computation of an equilibrium with a specified bootstrap current (SBC), the Namelist parameter 
NBSOPT must be 1. At present, for that purpose two different methods are implemented into CHEASE. First, 
if NBSTRP= 1, the converged equilibrium satisfies Eq. (43) so that the bootstrap fraction ( J -B)bs / ( J "  B), 
specified by Namelist parameter BSFRAC, is independent of s. Second, if NBSTRP = 2, the fraction of bootstrap 
current is a function C(s) which is specified in the same way as pt in Section 6.4.2, except that the Namelist 
arrays AFBS and AFBS2 are used for that purpose instead of AP and AP2. 

6.4.4. Control parameters for the equilibrium transformation rules 
The two equilibrium scaling rules in Section 5.3 are directed by the Namelist parameters NTMF0, NCSCAL, 

CURRT, CSSPEC and QSPEC. 
• The T profile can be modified so that T is I either at the magnetic axis or at the plasma boundary. This is 

controlled by NTMF0, which must be set to 1 for To = 1 and to 0 for Tedge = I. The modification of T is 
applied with one of the two next transformation rules. 

• The total plasma current can be specified. This is activated if NCSCAL = 2. The equilibrium is rescaled in 
such a manner that the total current is equal to CURRT. 

• The safety factor q given by Eq. (6) is specified at a certain plasma radius, i.e. q(CSSPEC) = QSPEC. Two 
options are implemented at present. First, if NCSCAL= 1, CSSPEC is a radial coordinate defined by Eq. 
(12), and second if NCSCAL= 3, CSSPEC is a generalized radius p defined in Table 1. 

ERATO and LION require To = 1 and Rmag = 1. The first condition is satisfied if NTMF0-- 1 and the second 
if the Namelist parameter NRSCAL is set to 1. For XTOR, NRSCAL must always be 0, i.e. R0 = 1, and 
NTMF0 = 1. 

6.4.5. Control parameters for the mesh densification 
The meshes used for the resolution of the equilibrium equation (3) or by the different codes linked to 

CHEASE can be densified locally (usually referred to as "packing"). These mesh-densifications are classified 
into two categories. First, densifications which allow the packing of the different meshes at user-defined 
locations. The method used for this purpose is presented in [9], Section 6.2. Table 16 gives an overview of the 
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Table 16 
Namelist parameters for "manual" mesh densifications 

249 

Ref. [9], Section 6.2 Stability-s s for I* or III o- 0 X 

NMESH NMESHA NMESHB NMESHC NMESHD NMESHE 
3+NSING SOLPDA SOLPDB SOLPDC SOLPDD SOLPDE 

3(~+NSING) 
NSING NPOIDA NPOIDB NPOIDC NPOIDD NPOIDE 
xj APLACE B PLACE CPLACE DPLACE EPLACE 
Aj AW1DTH BWIDTH CWlDTH DWIDTH EWlDTH 

10; 1] [0; 1] [0; 1] [-*r;~r] [-*r;*r] 

different Namelist parameters involved in these mesh densifications. The first column relates our nomenclature 
for the control parameters to the one used in [9].  The last row shows the interval of definition used for the 
specification of A-EPLACE. The parameters SOLPDA-E control the fraction of the mesh points which remain 
undensified. The 0 and x-meshes are densified with "periodic Lorentzians" defined by 

1 
f(x) = A} + sin2 ( ( x  -- xj)/2)" (55)  

Moreover, different automatic mesh densifications are implemented in CHEASE. First, the stability-s mesh 
can be densified so that the generalized radius p defined in Table 1 is equidistant. This operation is executed 
if the Namelist parameter NDIFPS is set to 1. Second, the equilibrium 0-mesh can be densified so that the 
poloidal flux area is constant in every O interval by setting the Namelist parameter NDIFT to 1. If NDIFT = 2, 
the equilibrium 0-mesh is densified in such a manner that the arc-length is constant in every 0-interval at the 
plasma surface. 

Last, an option exists for densifying the stability s-grid at user-selected values of the safety factor. This 
is particularly useful in MHD stability studies where the solution often varies rapidly at certain rational q- 
values. This densification is performed if NMESHA = 2. In that case, the stability s-mesh is packed at NPOIDQ 
locations specified in the Namelist array QPLACE, and the s-width of every of these packings is specified in 
the Namelist array QWIDTH. The fraction of undensified mesh is still given by SOLPDA in that case. 

7. Run output, convergence test and performances 

C CCCCCCCC H HH E E~:~ A AAAAAAAA S SSSSSSSS E E~E~ 
CC CCCCCCCC HH HHH EE ~kKKKKKk AA AAAAAAAA SS SSSSSSSS EE RR~I~'~ 
CCC CCCCCCC HHH HHH EEE ~KKK~ AAA AAAAAAA SSS SSSSSSS EEE ~ r ~  
CCC CCC HHH HHH EEE AU AAA SSS EEE 
CCC HHH HHH EEE AAA AAA SSS EEE 

CCC HHHHH~ HHH ~ E  AAAAAAA A~ SSSSSSSSSSS RR~R~ 
CCC ~ HHH ~ ' ~  AAAAAAAA AAA SSSSSSSSSSSS ~ 
CCC ~qHIIHHHHHH~ EEEEEEEEE AAAAAAAAAAAA SSSSSSSSSSSS R ~ R  
CCC HHH HHH EEE AAA AAA SSS EEE 
CCC CCC HHH HHH EEE AAA AAA SSS EEE 

CCCCCCCCCCCC HHH HHH ~E~FEEE AAA AAA SSSSSSSSSSSS ~ : ~ E E  
CCCCCCCCCCCC HHH ~ ~ . E E E  AAA AAA SSSSSSSSSSSS KKKKKKKKK~EE 
CCCCCCCCCC ~ ~ E~R~EE AA AA SSSSSSSSSS ~ E  

CUBIC HERMIT ELEMENT AXISYMETRIC STATIC EQUILIBRIUM 

*** Up-down asy1~etric test case 

NAMELIST VARIABLES 
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~EODATA 

NSURF=4,NSYM=O,EPSLON-1.E-8, 
ASP•T-.274••••••DELTA••.5•EL•NG-1.35••NU••.45••I=8.E-4•THETA•=-1.57•79633•SGMA=1.2• 

NS= 30,NT= 30,NISO=IOO,NDIFT=I, 
NMESHD-1,NPOIDD=I,SOLPDD=.6, 
DPLACE(1)=-1.57079633,DWIDTH(1)=0.157079633, 
NCHI-IOO,NPSI=15,NEGP--1,NER-I,NDIFPS=O, 
NMESMA-O, 
NINMAP-50,NINSCA-50, 

NFUNC=2,NPPFUN-2,NSTTP=2,NPP=I,NIPR=I, 

AT(l) = 0.16, 1.0, 1.0, -1.1, -1.1, 

AP(1) = 0.3,  0 .5 ,  0.4,  0 .0 ,  0 .4 ,  0 .0 ,  0 .0 ,  
NOPT-O,NIDEAL=O, 
NCSCAL=I,NRSCAL=0,NTMF0=1,CURRT=0.22, 

QSPEC-I.00000,CSSPEC=0.33, 

NBAL-1,NBLCO=I, 
NPLOT=I,&END 

NS = 24 NT = 24 NISO = I00 NPSI = 15 NCHI = I00 NINSCA = 50 NINMAP = 50 

SIGMA - MESH 

O.O000E+O0 4.1667E-02 8.3333E-02 1.2500E-01 1.6667E-01 2.0833E-01 2.5000E-01 2.9167E-01 

3.3333E-01 3.7500E-01 4.1667E-01 4.5833E-01 5.0000E-OI 5.4167E-01 5.8333E-01 6.2500E-01 

6.6667E-01 7.0833E-01 7.5000E-01 7.9167E-01 8.3333E-01 8.7500E-01 9.1667E-01 9.5833E-01 

1.0000E+O0 

THETA - MESH 

-2.5941E-01 2.9494E-01 8.3981E-01 1.2934E+00 1.6929E+00 2.1173E+00 2.6295E+00 3.1969E+00 

3.6881E+00 4.0274E+00 4.2440E+00 4.3865E+00 4.4867E+00 4.5626E+00 4.6243E+00 4.6778E+00 

4.7277E+00 4.7793E+00 4.8372E+00 4.9068E+00 4.9960E+00 5.1194E+00 5.3028E+00 5.5890E+00 

6.0238E+00 

RHOS - MESH 

2.8223E-01 2.7343E-01 3.0185E-01 3.3758E-01 3.4493E-01 3.1699E-01 2.8086E-01 2.7404E-01 

3.0488E-01 3.5141E-01 3.9407E-01 4.2829E-01 4.5582E-01 4.7909E-01 4.9973E-01 5.1726E-01 

5.2159E-01 5.0700E-01 4.8725E-01 4.6513E-01 4.3950E-01 4.0815E-01 3.6871E-01 3.2228E-01 

2.8223E-01 

POSITION OF THE CALCULATION MESH CENTER : RO = 1.00000000E+O0 ZO = O.O0000000E+O0 

PSIMIN = -1.836534545503E-02 RMAG = 1.021597404506E+00 ZMAG = -3.719708298367E-02 

RESIDU - 0.288355E-01 EPSLON = 0.100000E-05 

PSIMIN = -1.661582459457E-02 RMAG - 1.030745990227E+00 ZMAG = -4.385874559009E-02 

RESIDU = 0.794323E-03 EPSLON = 0.100000E-05 

PSIMIN - -1.596711173598E-02 RMAG = 1.035426319390E+00 ZMAG - -4.640274059845E-02 

RESIDU = 0.286070E-03 EPSLON - 0.100000E-05 

PSIMIN = -I.571235962674E-02 RMAG = 1.037772140897E+00 ZMAG = -4.766188361930E-02 

RESIDU = 0.112875E-03 EPSLON - 0.100000E-05 

PSIMIN = -1.560810137573E-02 RMAG = 1.038919956968E+00 ZMAG - -4.835864925118E-02 

RESIDU - 0.469769E-04 EPSLON = 0.100000E-05 

PSIMIN = -1.556458112799E-02 RMAG = 1.039469569079E+00 ZMAG - -4.876666308186E-02 

KESIDU - 0.201878E-04 EPSLON = 0.100000E-05 

PSIMIN = -1.554620520859E-02 RMAG = 1.039728588415E+00 ZMAG = -4.901273135310E-02 

RESIDU - 0.892763E-05 EPSLON = 0.100000E-05 

PSIHIN = -1.553838828270E-02 RMAG = 1.039849217392E+00 ZMAG = -4.916349192749E-02 

RESIDU = 0.408882E-05 EPSLON - 0.100000E-05 

PSIMIN = -1.553504877484E-02 RMAG = 1.039904859678E+00 ZMAG = -4.925667265705E-02 

RESIDU = 0.196375E-05 EPSLON - 0.100000E-05 

PSIMIN = -1.553362089938E-02 RMAG = 1.039930306134E+00 ZMAG = -4.931455687664E-02 

RESIDU = 0.100159E-05 EPSI~N = 0.I00000E-05 

PSIMIN = -1.553301251006E-02 RMAG = 1.039941843507E+00 ZMAG = -4.935062320680E-02 
RESIDU - 0.544595E-06 F.PSI.ON - 0.I00000E-05 

RESIDU OF ITERATION OVER MAPPING = 0.9497831927E-02 

PSIMIN = -1.552904151419E-02 RMAG = 1.039991293601E+00 ZMAG - -4.937510237078E-02 

RESIDU - 0.971877E-05 EPSLON - 0.100000E-05 

PSIMIN - -1.550072540141E-02 RMAG = 1.040050867132E+00 ZMAG = -4.939091390732E-02 

RESIDU = 0.103072E-04 EPSLON - 0.100000E-05 

PSIMIN = -1.549272513547E-02 RMAG = 1.040088727257E+00 ZMAG = -4.940077705803E-02 

RESIDU - 0.307884E-05 EPSLON - 0.100000E-05 

PSIMIN - -1.549009240143E-02 RMAG = 1.040109035493E+00 ZMAG = -4.940672639684E-02 
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PSIMIN = -1 .548912222623E-02 

RESIDU OF ITERATION OVER MAPPING = 

RESIDU = 0.107164E-05 EPSLON - 0.100000E-05 

RMAG = 1.040119185832E+00 ZMAG = -4.941027420930E-02 

RESIDU = 0.414671E-06 EPSLON - 0.I00000E-05 

0.6986186106E-04 

NS = 30 NT = 30 NISO = 100 }[PSI = 15 NCHI = 100 NINSCA = 50 NINMAP = 50 

SIGMA - MESH 

O.O000E+O0 3.3333E-02 6.6667E-02 I.O000E-01 1.3333E-01 1.6667E-01 2.0000E-01 2.3333E-01 

2.6667E-01 3.0000E-01 3.3333E-01 3.6667E-01 4.0000E-01 4.3333E-01 4.6667E-01 5.0000E-01 

5.3333E-01 5.6667E-01 6.0000E-01 6.3333E-01 6.6667E-01 7.0000E-01 7.3333E-01 7.6667E-01 

8.0000E-01 8.3333E-01 8.6667E-01 9.0000E-01 9.3333E-01 9.6667E-01 1.0000E+O0 

THETA - MESH 
-2.8214E-01 2.9600E-01 8.1069E-01 1.1855E+00 1.4673E+00 1.7079E+00 t.9398E+O0 2.1851E+00 

2.4605E+00 2.7732E+00 3.1118E+00 3.4443E+00 3.7358E+00 3.9691E+00 4.1464E+00 4.2793E+00 

4.3798E+00 4.4579E+00 4.5209E+00 4.5738E+00 4.6204E+00 4.6644E+00 4.7091E+00 4.7571E+00 

4.8110E+00 4.8750E+00 4.9566E+00 5.0701E+00 5.2447E+00 5.5355E+00 6.0010E+00 

KHOS - MESH 
2.3756E-01 2.4146E-01 2.8581E-01 3.4138E-01 3.8200E-01 3.9946E-01 3.9542E-01 3.7593E-01 

3.4951E-01 3.2602E-01 3.1424E-01 3.1802E-01 3.3459E-01 3.5748E-01 3.8116E-01 4.0297E-01 

4.2227E-01 4.3937E-01 4.5465E-01 4.6780E-01 4.7517E-01 4.6821E-01 4.5272E-01 4.3546E-01 

4.1730E-01 3.9754E-01 3.7487E-01 3.4723E-01 3.1214E-01 2.7042E-01 2.3756E~01 

POSITION OF THE CALCULATION MESH CENTER : RO = 1.04011919E+00 ZO = -4.94102742E-02 

PSIMIN = -1.548855605378E-02 

PSIMIN = -1.548806515524E-02 

PSIMIN = -1.548793646731E-02 

PSIMIN = -1.548789390676E-02 

PSIMIN = -1.548787702450E-02 

RESIDU OF ITERATION OVER MAPPING = 

RMAG = 1.040089928184E+00 ZMAG = -4.946354814463E-02 

RESIDU = 0.919745E-05 EPSLON = 0.100000E-07 

RMAG = 1.040091548477E+00 ZMAG = -4.946269950300E-02 

RESIDU = 0.188023E-06 EPSLON = 0.100000E-07 

RMAG = 1.040092611634E+00 ZMAG = -4.946233782789E-02 

RESIDU = 0.532150E-07 EPSLOB = 0.I00000E-07 

RMAG = 1.040093210281E+00 ZMAG = -4.946213409907E-02 

RESIDU = 0.194271E-07 EPSLON = 0.100000E-07 

RMAG = 1.040093508471E+00 ZMAG = -4.946203231838E-02 

RESIDU = 0.817001E-08 EPSLON = 0.100000E-07 

0.4915395039E-05 

PSIMIN = -1.548783841872E-02 

PSIMIN = -1.548783650404E-02 

RESIDU OF ITERATION OVER MAPPING = 

RMAG = 1 . 0 4 0 0 9 3 6 7 0 2 4 9 E + 0 0  ZRAG = - 4 . 9 4 6 1 9 7 6 5 5 8 9 1 E - 0 2  

RESIDU = 0 . 1 1 6 7 6 2 E - 0 7  EPSLON = 0 . 1 0 0 0 0 0 E - 0 7  

RMAG = 1.040093746675E+00 ZMAG = -4.946194414907E-02 

RESIDU = 0.156279E-08 EPSLON = 0.100000E-07 

0.5127213531E-07 

VOLUME AVERAGED QUANTITIES 

AVERAGED PRESSURE 6 . 7 7 9 3 1 8 2 9 E - 0 3  

TOTAL CURRENT = 2 . 1 9 5 1 8 0 6 1 E - 0 1  

NORMALIZED CURRENT 8.06185293E-01 

IN (MA,T,M) 6.41867272E-01 

PRESSURE PEAKING FACTOR = 3.21108781E+00 

POLOIDAL BETA = 1.23974779E+00 

POLOIDAL BETA (GA) = 1.37449768E+00 

LI = 1.21381786E+00 

LI (GA) 1.34574939E+00 

BETA [~] = 1.33495655E+00 

BETA* [7,] = 1.85708258E+00 

BETAX [~] = 1.37292064E+00 

G ( M A , T , M )  = 2 . 0 7 9 8 0 1 5 5 E + 0 0  
G* ( M A , T , M )  = 2 . 8 9 3 2 5 0 1 5 E + 0 0  

GEXP (MA,T,M) = 2.13894788B+00 

FO=IB.S./ITOT (NUE*=O) = 4.25089229E-01 

QUANTITIES EXTRAPOLATED ON MAGNETIC AXIS 

T(PSI)ON AXIS = 1.00000002E+00 

TT-PRIME ON AXIS = -1.24804921E+00 

O(PSI) O N  AXIS = 9 . 3 2 5 1 0 1 0 5 E - 0 1  
DQ/DPSI ON AXIS = 1.57453021E+01 

PRESSURE ON A X I S  = 2 . 1 7 6 8 9 8 6 3 E - 0 2  
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DP/DPSI ON AXIS = -8.21931046E-01 
I - PRIME ON AXIS = 2.05482761E+00 
<J.B>/<T/R**2> ON AXIS = 2.13721714E+00 

FUNCTIONS OF S = SQRT(PSI/PSININ) 

CS - MESH 
0.0000E+00 6.6667E-02 1.3333E-01 
5.3333E-01 6.0000E-01 6.6667E-01 

BETA-POLOIDAL(CS) 
4.1651E-01 4.1829E-01 4.2234E-01 
5.2291E-01 5.6544E-01 6.2549E-01 

CSM - MESH 
3.3333E-02 1.O000E-O1 1.6667E-01 
5.6667E-01 6.3333E-01 7.0000E-01 

PSI(CSM) 
3.5361E-05 3.1825E-04 8.8402E-04 
1.0219E-02 1.2765E-02 1.5594E-02 

T (CSM) 
9.9996E-01 9.9961E-01 9.9893E-01 
9.9116E-01 9.9026E-01 9.8992E-01 

T*DT/DPSI(CSM) 
-1.2454E+00 -1.2242E+00 -1.1818E+00 

-4.5624E-01 -2.3921E-01 -2.3169E-03 
P (CSM) 

2.1740E-02 2.1507E-02 2.1042E-02 
1.3369E-02 1.1277E-02 8.9517E-03 

DP/DPSI(CSM) 
-8.2193E-01 -8.2193E-01 -8.2193E-01 
-8.2193E-01 -8.2193E-01 -8.2193E-01 

O (CSM) 
9.3302E-01 9.3807E-01 9.4848E-01 
1.1817E+00 1.2810E+00 1.4225E+00 

DQ/DPSI(CSM) 
1.8644E+01 1.7899E+01 1.8721E+01 
3.4763E+01 4.3642E+01 5.7136E+01 

SHEAR(CS) 
O.O000E+O0 5.3931E-03 2.1938E-02 
4.5284E-01 6.3493E-01 8.7390E-01 

I-STAR(CSM) 
2.0523E+00 2.0322E+00 1.9920E+00 
1.2923E+00 1,0777E+00 8.3959E-01 

I//=<J . B> / <T / R**2> 
2.1346E+00 2.1135E+00 2.0712E+00 
1.3259E+00 1.0971E+00 8.4461E-01 

RH0(CS) 
O.O000E+O0 5.0579E-02 1.0135E-01 
4.2286E-01 4.8241E-01 5.4537E-01 

MERCIER 
-2.2177E+01 -2.5317E+00 -6.3785E-01 
2.5258E-01 2.6441E-01 2.7159E-01 

RESISTIVE INTFACHANGE 

-2.2401E+01 -2.7549E+00 -8.6119E-01 
3.2540E-02 4.5438E-02 5.4674E-02 

H OF GIASSER, GKEENE & JOH}/SON 
2.5992E-02 2.7570E-02 2.7411E-02 
3.0921E-02 3.2057E-02 3.4257E-02 

NTURN = 10 
NCBAL 

0 0 0 
0 0 0 

CHIO VALUES 
O.O000E+O0 

2.0000E-01 2.6667E-01 3.3333E-01 4.0000E-01 4.6667E-01 
7.3333E-01 8.0000E-01 8.6667E-01 9.3333E-01 1.0000E+00 

4.2905E-01 4.3880E-01 4.5205E-01 4.6944E-01 4.9214E-01 
7.1049E-01 8.2530E-01 9.6821E-01 1.1232E+00 1.2117E+00 

2.3333E-01 3.0000E-01 3.6667E-01 4.3333E-01 5.0000E-01 
7.6667E-01 8.3333E-01 9.0000E-01 9.6667E-01 1.0000E+00 

1.7327E-03 2.8642E-03 4.2787E-03 5.9760E-03 7.9562E-03 
1.8706E-02 2.2101E-02 2.5778E-02 2.9739E-02 3.1825E-02 

9.9795E-01 9.9673E-01 9.9533E-01 9.9386E-01 9.9241E-01 
9.9027E-01 9.9125E-01 9.9254E-01 9.9359E-01 9.9377E-01 

-1.1183E+00 -1.0340E+00 -9.2895E-01 -8.0218E-01 -6.4504E-01 
2.1410E-01 3.4178E-01 3.3937E-01 1.6496E-01 2.4802E-15 

2.0345E-02 1.9415E-02 1.8252E-02 1.6857E-02 1.5230E-02 
6.4215E-03 3.8694E-03 t.6361E-03 2.1009E-04 O.O000E+O0 

-8.2193E-01 -8.2193E-Or -8.2193E-01 -8.2193E-Ot -8.2193E-01 
-7.9660E-01 -6.9763E-01 -5.0598E-01 -2.0140E-01 -2.5551E-14 

9.6466E-01 9.8736E-01 1.0177E+00 1.0575E+00 1.1102E+00 
1.6317E+00 1.9580E+00 2.5093E+00 3.5935E+00 5.1073E+00 

1.9458E+01 2.0682E+01 2.2304E+01 2.4702E+01 2.8718E+01 
7.8843E+01 1.1666E+02 1.9174E+02 3.9925E+02 2.6471E+03 

5.0127E-02 9.1045E-02 1.4641E-01 2.1864E-01 3.1693E-01 
1.1832E+00 1.5767E+00 2.0705E+00 2.7100E+00 4.6056E+00 

1.9318E+00 1.8514E+00 1.7509E+00 1.6290E+00 1.4769E+00 
5.9022E-01 3.4928E-01 1.4552E-01 1.8666E-02 2.1901E-14 

2.0076E+00 1.9226E+00 1.8158E+00 1.6857E+00 1.5231E+00 
5.8350E-01 3.3693E-01 1.3531E-01 1.5902E-02 2.0446E-14 

1.5252E-01 2.0429E-01 2.5691E-01 3.1065E-01 3.6582E-01 
6.1303E-01 6.8735E-01 7.7152E-01 8.7129E-01 t.O000E+O0 

-1.6150E-01 4.1237E-02 1.4016E-01 1.9731E-01 2.3202E-01 
2.7592E-01 2.7716E-01 2.7442E-01 2.624tE-01 2.5000E~01 

-3.8431E-01 -1.8109E-01 -8.1420E-02 -2.3514E-02 1.1535E-02 
6.1382E-02 6.2537E-02 5.3202E-02 1.9817E-02 -1.7764E-15 

2.7965E-02 2.8482E-02 2.9278E-02 3.0078E-02 3.0437E-02 
3.6815E-02 3.6726E-02 2.9656E-02 7.4643E-03 -3.2953E-15 

0 0 0 0 0 
0 0 0 0 0 

Interpretation of the run output 
The test run output shows the result for an ITER like equilibrium asymmetric about the Z = 0 plane (see 

Fig. 1). The current density j~ is specified with Eq. (10),  and both p and I* are parabolic functions of  
s = 1 - 9"/9'min up to a certain radius, and vanish smoothly at the plasma surface. The run output first gives 
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2E-06 

ARmag 
1.5E-06 

1E-06 

5E-07 

0 , I I I 

0 2E-05 4 E-0 5  6 E-0 5  8E-05 
h 3 

Fig. 5. Convergence of the major radius of the magnetic axis. The regression curve is IRmag/Ro - 1.0400931 = 2.25.10-2h 3. The arrow 
indicates the error for N,7 = No = 30. 

the equilibrium Namelist (EQDATA) variables used for the computation of that equilibrium. The equilibrium 
(o-, 0) discretization grid is printed next together with the RHOS = ps(O) plasma radii and the position of the 
centre of the equilibrium discretization mesh (see Eq. (5)) .  For every Picard iteration in Eq. (27), the output 
shows the value of ~min, the position (Rmag, Zmag) of the magnetic axis and the residue (28). Moreover, the 
residue given in Section 5.2.3 is printed at every iteration over the integrals (9) required for the calculation 
of J,t,. As mentioned earlier, the equilibrium is first computed with a coarse discretization grid (here, NS = 
N,~ = 24 and NT = No = 24) centred at (Rc, Zc) = (R0, RZ0) = (1,0) and second with a refined grid (30 x 30 
in this example) centred at the position of the magnetic axis obtained previously. 

This equilibrium is scaled so that To = 1 (NTMF0= 1) and q(s  = 0.33) = 1. (NCSCAL= 1, QSPEC = 1. and 
CSSPEC = 0.33) by the equilibrium transformation rules in Section 5.3. After the scaling, results are given for 
global equilibrium quantities (see Table 1) and poloidal flux surface quantities (certain quantities are given at 
the integer st = CS stability mesh, and others at the half-integer St+l~2 = CSM mesh). The arrays MERCIER 
and RESISTIVE INTERCHANGE show the values of the -D1 and -DR parameters in Eqs. (19) and (20). A 
negative value in these arrays means that the corresponding poloidal flux surface is unstable with respect to ideal 
or resistive interchange modes. This equilibrium is stable with respect to n ---, cx~ ballooning modes because all 
the values in the array NCBAL are 0. A nonzero value implies that the corresponding flux surface is ballooning 
unstable. NTURN is the number of 2zr turns in X used to the left and to the right of the ballooning angle 
X0 = CHI0 (see Eqs. (17) and (18)) for the integration of the ballooning integral (16). For this equilibrium 
calculation, NBLC0= 1. Therefore, the ballooning stability criterion is checked only for X0 = 0. 

In Ref. [ 1 ], convergence tests are presented for a Solovev and a JET-shaped equilibrium with prescribed p~ 
and Tit ~. Fig. 5 shows the convergence of the magnetic axis for the asymmetric equilibrium with prescribed p~ 
and 1" used here as running test. Despite the additional loop over the intergrals (9),  the C)(h 3) convergence 
rate of the magnetic axis predicted by theory and observed for the test equilibria in Ref. [ 1 ] is preserved, and 
good accuracy is already obtained with a N S = N T = 3 0  equilibrium discretization mesh (arrow in Fig. 5). The 
run test equilibrium was executed with different computers and Table 17 shows the cpu time consumption. The 
scalar/vector ratio on Cray C-90 is of about 8.7 (scalar run with compiler option -Wf"-o novector"). 
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Appendix A. Derivation of expressions involved in the flux coordinate transformation 

The purpose of this appendix is to document the relations between the equilibrium coordinates and the gener- 
alized poloidal angle X. These relations are used in CHEASE for the integration of X and the nonorthogonality 

~q'X" 

A.I. Expression of X in terms of 0 on a constant poloidal flux surface 

The line element dl along a constant poloidal flux surface is related to the variation dx  of X by 

R 
d X = ~7 X •dl = JIV~-------/dl, (A.1) 

where J = [ (V!#' x VX).V~b]-1. Furthermore, using the definition of dl and Eqs. (1), (2) 

dl 2 - g,r,rdo. 2 + goo dO 2 + 2go~ do'dO 

p2(O) do.2 + o.212 (dps'~ 2] dO2 + 2 o . p s ( O ) ~  do.dO. (A.2) 
= p,(O)+ \dO7 J 

Along a constant poloidal flux surface, do" = -(3q~'/aO)/(aaP/ao")dS. Therefore, Eq. (A.1) becomes 

Ro"p2(8) dO, (A.3) d X = j~__ 
ao" 

which leads to Eq. (15). 

A.2. Relation between the nonorthogonality and the current density 

With Eqs. (1), (2), the toroidal current density can be expressed as 

j~ =eg,.V x (V4~ x Vq,') 

Table 17 
Cpu time required on different computers 

Computer Processors Cpu time (seconds) 

Cmy C-90 Cmy 250 MHz 11.8 
Sun Sparestation 10 Superspare 50 MHz 504.9 
Hewlett Packard K200 PA7200 100 MHz 165.6 
IBM-RS6000 Model 390 POWER2 71,5 MHz 159.0 
Silicon Graphics Indigo-2 R4400 200 MHz 183.9 
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R a (IW'1211"~ 
= J--Z ~ "  _ ~ -  ) , (A.4) 

where the subscript n denotes the normal derivative, (~, X±, ~b) is an orthogonal flux coordinate system, and 
J± = [ ( V ~  × VX±).V~b]-I. Therefore, 

R2 { 0 J±~ Rj~ (c91 I) 
\ ~ - ) .  = I~--TI 2 - 2  n---~ qt , . 

Moreover, 

/3. x - iV~l 2 = ~ -  and 

Eventually, using Eq. (A.5), 

-ff-x :,= 
l ( O J )  Rjo 

/1 

Substituting J by Eq. 
in Eq. (15). 

(A.5) 

(0O___~) = J_L (A.6) 
J 

+ 2 - 2 [j  (A.7) 

(14) and integrating with respect to 0 using Eq. (A.3) leads to the expression of fl~'x 

Appendix B. Evaluation of the Mercier criterion in CHEASE 

In this appendix, first informations about the formulation of the Mercier criterion (19) are quoted, and second 
the numerical method used for the evaluation of -Dr is described. 

B. 1. Relation between different formulations of the Mercier criterion 

According to Freidberg [23], Chapter 10.5.3, Eq. (10.160), the Mercier criterion for local interchange 
stability reads Dm< 1/4, where 

w'(ru,+J4) fF2 . r ( r p '  1 0 g ) ]  Tp'Js 
Din= 2¢r(q,)2 LIV~'I + ~ \lV~'l  2 J-~X J d x + ( - - ~ ( q t - T p ' J 2 )  (B.I) 

and the J/'s are given by Eq. (22). However, certain terms cancel in this form of D,n. The magnetic field line 
curvature, 

B.  V B  1 
" -  7 -  - B 2 (Vt, + ½V~B 2) , (a.2) 

is perpendicular to B. Thus, K = (O, rn, Kt) in the orthonormal magnetic coordinate system (B/B;n = 
x71PIXT~l;t) and with Eq. (2), 

w, a w, [_~_] ,v~,, 
K" = IVV'l - -~e  (p + ½82) - ~  - . B2 , (B.3) 

where P is defined in Eq. (17). Using Eq. (B.3) for Kn, and Eq. (17) for g and P, the integrand in Eq. (B.I) 
is transformed as follows: 
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IV'/'-----T+~t, lVT'l 2 aYx - IW'l-- -~+~ p + R - r + ~ L  R2 ] . - 7 - ~  . 

R2 L-~-X J,e " (B.4) 

The right-hand side of the Grad-Shafranov equation (3) can be recognized in Eq. (B.4). Using the relation 
between j@ and/7~ x in Appendix A, Eq. (A.7), it reads 

7T' J, a iw ,  i 2 piwl l (F an'''] . 
P' + ~ = - 7 = a,/-. [ T J .  R' t. L-ax--x J .  ,, 

Substituting that into Eq. (B.1) leads to 

v---~ + ~ IW, I = a T  - IW'l 2 L--gx-x Jr, 7 . , (B.6) 

and therefore, 

Tp' J2 
O m -  (q,)2 p' ( T2J' * J4) (PtJ3 - "1'5) * ~ ( q ' -  TptJ2) , (B.7) 

where the Ji's are defined in Eq. (22). Therefore, the Mercier criterion for interchange stability is equivalent 
to Eq. (19). 

B.2. Numerical evaluation o f - D I  

An inspection of the integrals (22) involved in the Mercier criterion (19) shows that Jl, J2 and ,/3 are 
quantities of the same order, as well as q' and J~. For certain tokamak equilibria, Jl '~ J2 "" J3 "~ 105, 
J~ ,-, q' ~-, 102 and therefore -DI ,  which results from a substraction of terms of order j2 and which can be of 
order 1 or less, is very sensitive to numerical cancellation errors. -DI  is most accurate if terms of the same 
order are calculated by the same numerical method. In (o-, 8) coordinates, 

ps(O) d 
qt(!It)=TtJ4-t-~---~ 1 Rao- cr aap./ao. R(~0/0~)  2 0, 

~=const. 
i ( ~ R0 0 21/t/00"2 ~ ') Rp2(O). 

J~(!g) = 2 - - o ( o ~ / & r ) j O ,  (B.8) 

~=-¢onst. 
where all derivatives against o- are evaluated at constant 0. In CHEASE, J1 ..... -/5, J~ and qt are computed in 
subroutine SURFACE with the integration method described in [ 1], Section 4.1, and the Mercier and resistive 
interchange criteria are evaluated in subroutine GLOQUA. Acceptable results are also obtained if both q' and 
J~ are differentiated numerically. 

Appendix C. Bicubic spline interpolation of the cubic Hermite equilibrium solution 

The purpose of this appendix is to show how the solution for ~ given in Hermite bicubic basis functions 
can be smoothed by interpolation using bicubic splines. The smoothing algorithm applied in CHEASE uses a 
bicubic spline interpolation of !/' from the values at the (o', 8) nodes, ignoring the derivatives !g,,, !I% and ~ 
of the bicubic Hermite solution. The new values of !g,,, !/% and ~<~ are computed at the nodes such that the 
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Hermite bicubics have continuous second derivatives. Here we discuss how ~,~, g'e and g',re are computed for 
the smoothed solution. 

The cubic spline interpolation for a tabulated function f i  = f ( x i ) ,  i = 1 . . . . .  N in the interval [ x j ,  xj+l ] is 
given by [33,34] 

= t, A '¢ 
f ( x )  a l f j  ÷ a 2 f j + l  ÷ a 3 f j  ÷ 4fj+l , (C.1) 

where 

A I -  X j + l -  x , 

X j+l  - x j  

x - x j  
A 2 -  

X j+ 1 --  X j  

l A rA2 A 3 = ~  i t  1 - 1 ) ( X j + l - X j )  2 , 

1 2 A4 = ~ A 2 ( A  2 1) (Xj+l -- X j )  2 • (C.2) 

The second derivatives f i '  = f "  ( x i ) ,  i = 1 . . . . .  N required for the evaluation of (C.1) are computed by imposing 
that the first derivative, 

d f  f j + l  - f j  3 A 2 1 - 1  ,, 3A 2 - 1  ,, 
d--x ~ xj+l  - x j  6 f J  q- "6" f j + l ,  (C.3) 

is continuous at x = xi ,  i = 1 . . . . .  N. This condition is satisfied for i = 2 .. . . .  N - 1 if 

Xi " f i + l  --  f i  f i  - -  f i - 1  Xi - -  X i - I  " Xi+l - -  Xi--I " Xi+l --  f i+l  = -- , (C .4)  
"6" f i - I  ÷ 3 f i  + 6 Xi+ 1 --  Xi Xi - -  X i - 1  

and the values for f'l and f~v are given as boundary conditions. 
For a tabulated function defined on a rectangular grid (x,  y) ,  the bicubic spline interpolation is a product of  

one-dimensional splines taken in the x and in the y directions. Therefore, the bicubic Hermite finite element 
solution g'  on a rectangular (00, 0) mesh, with periodic boundary conditions in O (i.e. ~/' (o', O+21r) = ~(00,  0) ) 
will have smooth first and second derivatives if 

(i)  Eq. (C.4) is solved for all Ok, k = 1 . . . . .  No, with 
o Xi = O ' i , i  = 1 . . . . .  Na;  

• f i  = ~(00i ,  Ok ) , i  = 1 . . . . .  Na; 
• Boundary conditions: f~ = (o~F/a00)(o'~,Ok) and f~¢ = (09 t /&r ) (o ' 1v , ,Ok ) ,  given by the bicubic 

Hermite solution. 
(ii) 09 ' /00  ° is reevaluated at every (00,0) node with Eq. (C.3).  

(iii) Eq. (C.4) is solved for all 00k, k = 1 .. . . .  N~,, with 
• Xi = O i ,  i =  1 . . . . .  NO; 
• f i  = ~F(00k, 0 i ) ,  i = 1 . . . . .  NO; 
• Periodic boundary conditions, f~ = (o~tt/aO) (O'k, Ol) = ( o ~ / a o )  (00k, ON0+l ) = f~0+l; 
and with 
• X i = O i ,  i =  1 . . . . .  Ne; 
• f i  = (0~/B00) (00k, Oi), i = 1 .. . . .  Ne; 
• Periodic boundary conditions, f~ = (B2gr/a00aO) (00k, 05 ) = (B2~/&rc~O) (00k, ON~+I ) = f~e+~" 
For periodic boundary conditions, the system (C.4) becomes cyclic. 

(iv) (a~ /c~8)  and (c~2~/a00c~O) are recomputed at every (0",8) node with Eq. (C.3).  
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A p p e n d i x  D.  S y m b o l i c  n a m e s  o f  s o m e  i m p o r t a n t  v a r i a b l e s  i n  C H E A S E  

Symbol Definition Symbolic name Subroutine 

a/Ro ( 47,49 ) ASPCT Namelist 
al ( 32 ) SCALE NOREPT 
a2 ( 33 ) ZCSHFT NOREPT 
A ( 9" ) ARATIO SURFACE 
Cl, c2 (17) ZE ZG BALOON 
C(9") (14) CP SURFACE 
C'  ( qt ) ( 15 ) CPDP SURFACE 
Co ..... C3 (9)  CINT 
-Dr (q-') (19) SMERCI GLOQUA 
- DR ( 9 t ) ( 20 ) SMERCR GLOQUA 
fc (25) RFCIRC SURFACE 
g (17) ZGBAR BALOON 
H (21 ) HMERCR GLOQUA 
1 (4),Table 1 RITOT GLOQUA 
1" (g ' )  (7)  CIPR ISOFUN, PRFUNC 
IN Table 1 RINOR GLOQUA 
I~ (g ' )  Table 1 ZJPSI GLOQUA 
111 (g ' )  (8) CIPR ISOFUN, PRFUNC 
j~ (3,10,11 ) PJIPH1 CURENT 
J (14) ZJAC SURFACE, 
Jv (36) ZJAC 1 VACUUM 
( J .  B) (44) RJPAR SURFACE 
( J .  B)bs (23) RJBSH SURFACE 
Jl ..... J6, J~ ( 22 ) RJ 1,...,RJ6,RJ5 P SURFACE 
gi Table 1 RINDUC GLOQUA 
Nm MSMAX Namelist 
Ns NPSI Namelist 
No NT Namelist 
No, NS Namelist 
N x NCHI Namelist 
p (9  t )  (3) CPR PPR1ME 
p~ ( 9 t ) ( 3 ) CPPR PPRIME 
ppf. Table 1 CPPF GLOQUA 
q (9") (6) QPSI SURFACE 
q' ( q, ) CDQ SURFACE 
qo Q0 MAPPIN 

Ro l 
Rc ( 5 ) R0 Namelist 
Rmag RMAG MAGAXE 
Rvc ( 35 ) ROW Namelist 
sk (12) CS MESH 
$k+ 1/2 (12) CSM MESH 
g(q')  Table 1 SHEAR GLOQUA 
T( 9 t ) ( 3 ) TMF ISOFUN, PRFUNC 
TT ~ ( q, ) ( 3 ) TTP ISOFUN, PRFUNC 
V ( ~ )  Table 1 VSURF GLOQUA 
2~Vto t Table 1 VOLUME GLOQUA 

ERDATA, JNOVAW, BALOON, VACUUM 
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Symbol Definition Symbolic name Subroutine 

Zc ( 5 ) RZ0 Namelist 
Zmag RZMAG MAGAXE 
Zvc (35 ) RZOW Namelist 
a (14) NER Namelist 
/~ Table 1 BETA GLOQUA 
t*  Table 1 BETAS GLOQUA 
tip (11") Table 1 BETAB GLOQUA 
/~p,tot Table 1 BETAP GLOQUA 
fix Table 1 BETAX GLOQUA 
~V',x (15) BCHIN, BCHIO SURFACE 
F GAMMA Namelist 

(49) TRIANG Namelist 
(28) EPSLON Namelist 

( ( 49 ) CETA Namelist 
O (5) CT MESH 
0o ( 50 ) THETA0 Namelist 
R" (49) ELONG Namelist 
Al (42) CFBAL Namelist 
A2 CPRESS Namelist 
/z ( 14 ) NEGP Namelist 
t, (50) RNU Namelist 
~, ~ (49,50) XI Namelist 
(r (16) BALOON 
p(tp-) Table 1 RSURF GLOQUA 
ps(O) (5) BOUND 
tr ( 5 ) CSIG MESH 
b- (50) SGMA Namelist 
Xk (14) CHI MESH 
Xt+l/2 (14) CHIM MESH 

(3) CPSI SOLVIT 
g'Solovev (47) TEST 
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