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A numerical code using Hermite bicubic finite elements has been developed for the computation of axisymmetric
magnetohydrodynamic (MHD) equilibria. The code provides a mapping to flux coordinates for MHD stability calculations.
Several test cases are studied to show the convergence rate for the equilibrium. Convergence tests are also presented for the
eigenvalues of the stability calculations when the equilibrium mesh is varied.

1. Introduction

For the study of magnetohydrodynamic (MHD)
stability, accurate, flexible and efficient computa-
tion of equilibrium solutions is essential. Several
numerical codes have been developed for this
purpose. These codes use various numerical tech-
niques such as conforming [1] or non-conforming
[2] linear finite elements, finite differences [3-5],
spectral decomposition [6], or a variational mo-
ment method [7,8]. In the present paper, we
document a recently developed code using bicu-
bic Hermite elements. It will be shown by com-
parison to codes using linear elements and sec-
ond-order accurate finite differences, that the
improved convergence properties of the bicubic
elements give considerable savings in computa-
tion time for typical tokamak applications. Such
comparisons are made for the convergence of the
equilibrium itself and in addition for that of the
eigenvalues computed by MHD stability codes
when the equilibrium mesh is refined and the
stability mesh is held fixed. To our knowledge,
this is the first time that such convergence tests of
the MHD growth rates are presented in the liter-
ature. Nevertheless, this appears to be the most
direct way to measure the performance of an
equilibrium code for MHD stability studies.

We have named the equilibrium code
CHEASE (Cubic Hermite Element Axisymmetric
Static MHD Equilibrium solver). It solves the
Grad-Shafranov equation with a prescribed, but
rather arbitrarly shaped, plasma boundary and
provides input for two MHD stability codes, ER-
ATO [9] and MARS [10].

2. Formulation of the equilibrium problem

The problem of axisymmetric MHD equiiib—
rium is well known [11]. The magnetic field can
be represented as

B=TVp+Vp X VYV, (n

where ¢ is the ignorable toroidal angle (see fig.
1) and ¥ is the poloidal magnetic flux function.
In the case of static MHD equilibrium, the
poloidal current flux function 7 and the isotropic
plasma pressure p are functions of ¥. The equi-
librium condition is given by the Grad—Shafranov
equation [12-14]
1

e A et Wi (2)
where j, denotes the toroidal plasma current
density.

0010-4655 /92 /$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved



288 H. Liitjens et al. / Axisymmetric MHD equilibrium solver

magn, :

R, ‘ “ |

Fig. 1. The cylindrical coordinates (r, z, ¢) in toroidal geome -
try.

CHEASE solves eq. (2) over the plasma cross-
section {2 with the fixed boundary condition ¥ =
0 on 842 using bicubic Hermite elements for V.
In the following, we consider cases in which ¥ is
negative everywhere inside the plasma and the
total plasma current

1:/“,,;,, ds (3)

Is positive.

For the solution of equilibrium equation (2),
the plasma cross-section (2 is transformed into a
rectangular region 0 <o <1, 0 <8 <27 by the
use of a modified and non-orthogonal coordinate
system (o, ) related to the cylindrical coordi-
nates (r, z) by

r=op,(0) cos 6 +ry,

(4)

z=0gp,(8) sin 8 +z,

(see fig. 1). Details concerning the solution of the
Grad-Shafranov equation are given in appendix
A. In appendix B we show how a single solution
of the Grad-Shafranov equation may be used to
generate a whole family of equilibria with fixed
poloidal beta and internal inductance, but with
different plasma currents or safety factors.

3. Convergence of the equilibrium

In this section, we show the convergence of the
equilibrium solution with respect to the cell size.
For these tests, we use an equal number of inter-
vals in the o- and #-directions, N, =N, =N, and
the “cell size™ is defined as & =1/N. Standard
error cstimates [15] predict that ¥ itself con-
verges with an @(4*) error, while the error in V¥
is @(h?).

Here, we usc two different quantities to record
the convergence, namely, the poloidal magnetic
ficld energy

Wlfz’lzfl fznops(g)

a=0"6=0 r

vw |-

do df, (35)

and the position of the magnetic axis. In the
special case where the equilibrium equation (2) is
linear, i.e. j, is independent of ¥, the poloidal
magnetic field energy is expected to converge as
@(h") [15]. For an up—down symmetric equilib-
rium, the magnetic axis where V¥ = 0 will occur
at (r, z)=(R_, 0). Evidently, R, should have
the same convergence properties as 0¥ /dr, i.e.
the error should be #(4%). We point out that
CHEASE can also deal with equilibria which are
up—down asymmetric.

In all convergence tests to follow, we have
used a packing of the 6-mesh in such a way that
the area of all cells in the 6-direction (for fixed
o) is the same. Two different classes of equilibria
will be considered: analytic Solovev equilibria [16]
and non-linear equilibria where p and T° are
low-order polynomials in ¥ /W,

min*
3.1. Solover equilibrium

A standard test case for any equilibrium code
is the family of analytic equilibria found by
Solovev [16] for which eq. (2) is a linear equation
for ¥. We consider the following special cases.
where

) 1+E3[I
P == —==W,

ER?)CIU (6)
T(W)=T,=1,
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Fig. 2. Convergence of the poloidal magnetic energy of the
Solovev test case. The regression curve is 75 — 1.7788780145
X 1072 = —3.8115.102h°.

and the poloidal beta is unity. In eq. (6), E
denotes the elongation, R, and a the major and
the minor plasma radius, respectively. g, is the
safety factor on the magnetic axis. The corre-
sponding analytic formula for ¥ is

E riz’ L(.2 232 2p2
1P=——2R3q o +4(r*—=RG) —a’R3]. (D)
0do

For the convergence study, we have chosen the
Solovev equilibrium with ¢,=3, E=1, a=1
and R,=1.

In fig. 2, we observe that the poloidal magnetic
field energy of the numerical solution converges

towards its analytical value with an @(h®) error.
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Fig. 3. Convergence of the magnetic axis of the Solovev test
case. The regression curve is R, — 1 =3.4184 X 104>,

Figure 3 shows that the error in the magnetic axis
R, is @(h?). Thus, the poloidal magnetic field
energy and the magnetic axis converge according
to theoretical expectation.

3.2. Non-linear equilibria

The Solovev equilibrium bypasses one diffi-
culty in eq. (2): the problem loses its non-linear-
ity, as the source term j, is independent of V.
We now consider a non-linear test case with
geometry chosen to model JET (Joint European
Torus). The plasma surface is defined by

r=R,+a cos(0+3 sin 8),
z=Fasin 8,

(8)

where a, E and R, have the same meaning as in
eq. (6), and & stands for the triangularity. For our
test case, the inverse aspect ratio is a /R, = 0.37
and the other parameters are £ = 1.7 and 6 = 0.3.
We have chosen the following pressure and 72
profiles:

P(¥/ W) = 0.07(¥/ Vi)'
TX(W/¥,,) =098 +0.1(¥/¥_ ) (9)
—0.083(¥/¥,,.) .

in

This equilibrium has been rescaled using the
transformation described in appendix B such that
the safety factor on the axis is g, = 1.2. Figure 4
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Fig. 4. Convergence of the magnetic axis of the JET test case.
The regression curve is R, /R, —1.05835305 = 3.231 X
107247,
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Fig. 5. Convergence of the poloidal magnetic energy of the
JET test case. The full circle correspond to 7 —6.0685373 x
10 *. The equation of the solid line is y = —4.2169x 10 ~*h*,

shows that the magnetic axis converges according
to theoretical prediction with an #(h*) error. In
the case where eq. (2) is a non-linear equation in
Y, the poloidal magnetic field energy (5) no
longer shows the #(h°®) convergence rate ob-
tained for linear equilibria. Indeed, we observe in
fig. 5 that the error in the poloidal magnetic field
energy is asymptotically @#(4*) for the non-linear
test case (9).

3.3. Discussion

The position of the magnetic axis is commonly
used for validating equilibrium codes. In ref. [2]
two Solovev cases were used as convergence tests
of the finite linear “hybrid element” code CLIO,
one with elongation E =1, another with £ = 2.
For both test cases, R,=1, a =04 and g,= 1.
According to the curves presented in ref. [2], the
error in the magnetic axis is R, — 1=0.1364"
for the first case and R, — | = —0.130A47 for the
second. We have computed the same equilibria
with CHEASE. Linear regressions give R, — 1 =
9.2068 X 10734 for the E =1 case and R, — |
=9.9660 X 10 *h* for the E =2 case. Conse-
quently, CLIO yields an error of AR, = 15X
10" on the magnetic axis with a 300 x 300 mesh.
whereas CHEASE needs only a 18 X 18 mesh to
reach the same accuracy. The CPU time required
for the calculation of these equilibria on the

CRAY-2 is about 350 seconds for CLIO and 2.3
seconds for CHEASE.

The same comparison can be done with the
JET test case shown in the same publication.
There, the error in the magnetic axis behaves like
R, /R, — 1.1014865 = — 1.8193.10 *k* for
CHEASE, and R, /R, - 1.1014865 = 0.1378h"
for CLIO. Therefore, CLIO gives an crror of
AR, = 15X 107° in the magnetic axis with a
300 X 300 mesh, while CHEASE reaches a com-
parable precision on a 22 X 22 mesh. The resolu-
tion time on the CRAY-2 for this equilibrium is
of 6.5 CPU seconds with CHEASE and of about
400 seconds with CLIO.,

4. Mappings for ERATO and MARS
4.1. Computation of poloidal flux surface integrals

In this section, we discuss the mapping of the
equilibrium into the flux coordinates and the
calculation of the equilibrium quantities required
by the two stability codes ERATO [9] and MARS
[10]. ERATO is an ideal MHD stability code
using the so-called “hybrid finite elements” in
both the radial and poloidal directions. MARS is
a resistive MHD stability code that uses Fourier
decomposition in the poloidal angle and finite
differences in the radial direction.

The flux coordinate system used by both stabil-
ity codes differs completely from the one used for
the equilibrium calculation. The radial stability
coordinate of the two codes is

’ q/min - |
S = W . ( 1())

The angular variable y is defined by the choice of
the Jacobian J=[(V¥ X Vyx)- V]~ of the map-
ping from (¥, y, ¢)-space to Cartesian coordi-
nates. In the equilibrium code, J is restricted to
the form

J=C(¥)re |V |*, (11)

where « and w are integers. C(¥) is obtained by
demanding that y increases by 2w per poloidal
turn.
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The stability codes require equilibrium quanti-
ties of the form

F (W = constant, x)

x [ 0 W ¥V Y ¥¥
=[ f lp’ Wy 1 2 2
0 do 00 0dgdf do L)

xJ dy'. (12)

Most finite-element solutions of eq. (2) generate
problems for an accurate computation of these
kind of integrals. The Hermite cubic elements do
not demand continuity on the cell edges for
*W¥ /d0? and 9°W /002 Thus, to perform inte-
grals of the type of eq. (12) accurately, the inte-
gration interval is split into a set of subintervals
delimited by the intersections of the constant-¥
surfaces with the (o, 8) cell edges. This allows
the discontinuities which may appear in the inte-
grand of eq. (12) to be avoided and a high-order
integration scheme, such as Gaussian quadra-
tures, can be applied.

4.2. Convergence studies of the mappings

The Solovev equilibrium described in section
3.1 allows one to avoid the solution of the Grad-
Shafranov equation (2), because analytic values
for ¥, ¥ /30, ¥ /30 and 3*¥ /3038 can be
substituted on the nodes of the equilibrium mesh.
Consequently, the mappings can be decoupled
from the equilibrium solver in this case, and the
convergence properties of the equilibrium quanti-
ties as well as the accuracy of the integration
scheme presented in section 4.1 can be verified
independently. The convergence properties of the
mappings are checked by observing the growth
rate (normalized to the Alfvén frequency) of the
most unstable linear eigenmode. For this test, we
keep the stability meshes fixed and increase the
equilibrium mesh density. For the three test cases,
the y-coordinate defined by the constant volume
Jacobian (J=C(¥) or a=0 and u =0 in eq.
(11)) gives good results for the stability calcula-
tions (better than with straight field lines). The
s-mesh has been packed on all resonant-g sur-
faces.
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Fig. 6. Convergence of the growth rate of the Solovev test case
with ERATO.

The equilibrium quantities employed for the
stability calculation are given in appendix C. They
depend on ¥, V¥ and second derivatives of V.
We are not aware of a theoretical prediction for
the convergence of the stability eigenvalues with
the equilibrium mesh.

For the Solovev test case, we have computed
the growth rate for toroidal mode number n = 3,
with a perfectly conducting wall on the plasma
edge. The stability mesh is fixed to N, =100
radial and N, =100 intervals with ERATO, and
N, =110 radial points and N,, = 11 Fourier com-
ponents in the y-direction with MARS. The error
in the growth rate obtained with the analytic
solution on the equilibrium gridpoints (full circles

5.332¢-2
Y 543313—2J
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Fig. 7. Convergence of the growth rate of the Solovev test case
with MARS.
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Fig. 8. Convergences of growth rates of the JET test case with
ERATO (open circles) and MARS (full circles).

in figs. 6 and 7) converges as @{(h*) with some
oscillations superposed for ERATO. It appears
that the dominant error in the growth rate comes
from the #(h*) convergence of ¥ when the
analytic solution is injected on the nodes. A check
on the convergence of the poloidal magnetic field
energy reveals a @(h*)-behaviour in this case,
instead of #(h®) for the numerical solution. With
the numerical solution (open circles, figs. 6 and
7), the @(h¥)-error in the growth rate appearing
with the analytical solution is removed for both
stability codes and only the oscillatory behaviour
remains, probably because the finite-element rep-
resentation minimizes errors in a global sense.
However, the error in the growth rate is much
smaller than with the analytic solution on the
equilibrium gridpoints.

The JET case described in section 3.2 shows a

=1 instability with a perfectly conducting wall
placed at one minor radius from the plasma sur-
face. In fig. 8, we observe that the growth rate
converges as @(h”) with the two stability codes.
The open circles are obtained with ERATO, and
the full circle with MARS. Here, the fixed stabil-
ity meshes are N, = 180 radial and N, = 180 in-
tervals with ERATO, and the same as for the
Solovev case with MARS.

4.3. Discussion

The values of the growth rates after conver-
gence of the equilibrium are slightly different

H. Latjens et al. / Axisymmetric MHD equilibrivum solver

with ERATO and MARS because the discretiza-
tion methods used in the two stability codes lead
to different truncation errors. After convergence
of the stability calculations with fixed equilibrium
mesh (N, =N, = 40), both codes give the same
growth rates: y =5.395x 107" for the Solovev
and y= 1231 x 1072 for the JET test casc. It
should be noted that 1077 is a typical growth rate
for production runs in the context of beta-limit
studies.

It is interesting to compare the results of sec-
tion 4.2 with those obtained by other codes. Al-
though convergence properties of many equilib-
rium codes are available in the literature, to our
knowledge no convergence curves have been pub-
lished showing the error due to the equilibrium
calculation on the stability results.

We have used the equilibrium code EQLAUS
[5] combined with ERATO for such a comparison
with CHEASE. EQLAUS uses a finite-difference
scheme in Cartesian coordinates for the dis-
cretization. We have reproduced the non-linear
JET case shown in section 3 with this numerical
package. The ERATO mesh has been fixed (N,
=N, = 180), and thc same radial stability mesh
packing was used than with CHEASE.

For this test case, the growth rate behaves like
v =1247 x 1072 — 0461h with EQLAUS +
ERATO, y = 1.247 x 1072 + 4.691h° with
CHEASE + ERATO and y = 12070 x 107>+
4.316h° with CHEASE + MARS (sec fig. 8).
Thus, the error in the growth rate due to
EQLAUS is of about Ay = 1.5 X 107" on a 300 X
300 mesh. This precision is already reached on a
16 X 16 mesh with CHEASE and ERATO. On
the CRAY-2, the computation of a 300 x 300
case with EQLAUS takes about 300 CPU sec-
onds, while a 16 X 16 case with CHEASE re-
quires only about 15 seconds, including in both
cases the computation of the stability input quan-
tities, ballooning and local stability criteria (see
appendix C).

5. Implementation

Figure 9 shows the CPU time needed to calcu-
late a non-linear test case and the quantities
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Fig. 9. Computation time on the CRAY-2 for non-linear
equilibria including mapping to flux coordinates, ballooning
and local stability criterions.

required by the stability codes on the CRAY-2.
The most time-consuming operations are the
Gauss elimination used in the solution of eq. (2),
and the tracing of constant flux surfaces. The first
operation is well vectorized, the second would be
easy to parallelize: each constant poloidal flux
surface can be traced by a different processor of
the computer. However, this option has not yet
been implemented.

The equilibrium solver needs approximatively
4N,N,(4N, + 300) Mwords of central memory
storage space, the mapping for MARS 120N, N,
+ 50N, N,, Mwords, where N,, is the number of
poloidal modes for the Fourier decomposition,
and the mapping for ERATO 120NN, + 40N N,
Mwords. The code has now been implemented on
different types of computers (CRAY, IBM, SUN),
and is easily transportable.

6. Conclusion

The Hermite bicubic elements have proved
their efficiency in the solution of the Grad-
Schliiter-Shafranov equation. The convergence
rates of the equilibrium solution agree with the
theoretical predictions, despite the special treat-
ment on the axis of the modified polar mesh used
for the discretization. Moreover, the results pre-
sented in sections 3 and 4 indicate that the slopes

of the convergence curves are very small. This has
been confirmed by extensive use of the code.

To study the effect of the equilibrium calcula-
tion and the mapping to flux coordinates on the
accuracy of the stability calculations, we have
shown convergence tests with the stability codes
ERATO using two-dimensional linear “hybrid el-
ements”, and MARS, where Fourier decomposi-
tion is used in the poloidal direction. For both
codes, the error due to the equilibrium solver on
the stability results converges in @(h%), to be
compared with the @(h)-error if second-order
accurate finite differences are used for the dis-
cretization of the equilibrium.
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Appendix A. Solution of the Grad-Shafranov
equation

In the standard manner of the finite-element
method, eq. (2) is solved in the coordinate system
(4) by expanding ¥ in Hermite bicubics on a
rectangular grid in ¢ and 8. The equation is then
multiplied by an arbitrary weighting function from
the same function space as ¥ and is integrated in
space. The integrals are carried out numerically
using a Gaussian quadrature formula.

The Hermite bicubics use as unknowns the
values of the function V¥, its first derivatives
0¥ /9o and 8¥ /00 and the mixed second deriva-
tive 32W /3090, all on the nodes of the mesh. The
boundary condition ¥ =0 on 8{2 implies ¥ =10
and ¥ /00 = 0 for all the boundary points ¢ = 1
and 6 =46, j=1,..., N, where N; is the number
of intervals in the @-direction. The origin of the
polar coordinate system requires some extra care
as the coordinate transformation (4) becomes sin-
gular there and one single geometrical point is
represented by N, mesh points. We impose the
condition that ¥ must be a regular function of r
and z at the origin. A first-order Taylor expan-
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sion of ¥ around (ry, z,), when expressed in
terms of (o, §)leads to
V=Y +op(0)[¥, cos 8+ V¥, sin @]

+@(0?). (13)
Thus, the regularity condition forces the 4N, un-
knowns ¥, 3% /dco, 8¥ /00 and 8°W¥ /3006 for
o=0and =6,,j=1,...,N, to be replaced by
the three unknowns ¥., ¥ and ¥.. We impose
the following conditions by collocation on the N,
grid points for o = 0:
v=yv_
o

— =0,
a6

v .
— =p,(0)[¥, cos 6 + V. sin 6], (14)

do
e84
do 08

D

=p(0)[— W, sin §+ ¥, cos 0]

dp, )
+——[¥, cos 6+ V. sin 8].
de -

The functions p and T? that define the
toroidal current density are functions of ¥ /¥, ..
(¥ is negative inside the plasma). Equation (2) is
then solved iteratively by a Picard method

dp, 1 dTZ
SV = sy = (19

The iteration is terminated when

V.., —¥l

TA <e, (16)

where € is a predefined number. The norm used
in €q. (16) is H u ” = [(Znodesuz)/Nnndes]l/z'

The iterations are normally done first on a
coarse grid (N, X N, =16 X 16) and later on a
more refined grid. For the coarse grid, the centre
of the polar coordinates is chosen as the geomet-
rical midpoint of the plasma. For the refined grid,
we choose the magnetic axis of the approximate
solution as the centre of the polar coordinates.
This is done to facilitate the subsequent mapping
to flux coordinates (see section 4).

Appendix B. Transformation of the equilibrium

It is well known [9] that a single solution of the
Grad-Shafranov equation can be used to gener-
atc a whole sequence of cquilibria with fixed
poloidal beta but different plasma current and
rotational transform. Two transformations which
leave eq. (2) unchanged are used to effect this.
The first is a scaling:

l[,ncw = lu’lpuld i Tncw = /’LTold ’ pncw = /'szold . ( 17)

The second shift of 77

5

T..=T:

new old

+C, (18)

leaving ¥ and p unchanged. These transforma-
tions are used in CHEASE to generate ecquilibria
with prescribed values of either the total current
(3) or of the safety factor

. T(¥,) é dr
q 2T W, ~constant | vy f

(19)

on some arbitrary flux surface ¥,. The existence
of two transformations also allows specification of
T on a given flux surface ¥,.

When the total current is specified, we first
rescale using eq. (17) with w =1 fea/Toa and
then shift using eq. (18) with C =T .ol ¥7) =
T2(¥,), where T denotes the value after rescal-
ing. When the safety factor is prescribed, we first
Shift Tz by C = [qszpccificd/qild(qfq) - ”TZ(lpq) and
then rescale the solution by u = T iea/T(¥,),
where T denotes the value after the shift.

After the transformation of the equilibrium,
all relevant physical quantities characterising the
equilibrium can be computed. A list of these
quantities is shown in table 1.

Appendix C. Input quantities for linear-stability
codes

The non-orthogonality of the stability mesh

VY- Py

=— 20
B‘I’X |V1p]2 ( )



Table 1

Physical quantities computed by equilibrium code
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Global quantities
Total plasma volume /27

Volume average
Total toroidal current

Plasma inductance

Total beta

Fusion beta

Poloidal beta

Flux surface quantities
Volume of ¥ = const /2

Generalized radius of ¥ = constant

Toroidal current within ¥ = constant

Vieo = o d¥dy

f—=(f”f_] d‘lld)()/ Vu)l
Iy= (i J/r)d¥dx

T
'__I'd%Rmug o r? X
2p
B==
—5\ /2
o 20
B2
8w -
Bp‘ ILfZ,Rm;\gp tot

V) = [yioy, $ dyd¥’
p(W) = V(W) V, )2
LW = [y $is(J/r) dxd¥’

8 v

Poloidal beta on ¥ = constant BWV)=———— p (W) dy’
’ Id%(W)Rmag f‘p,="'mm

N p dq

Global shear on ¥ = constant (W)= —— —(¥)
q(¥) dp
Local quantities
(BXVY¥) BxXVw

Local shear $iocal = = v ( )

Magnetic field-line curvature

2 X 2
Ivw)© |vw|”

1
K= ?VY*(BV)B

is obtained by integrating

dBy,
ri, [a(In r)
[t
(lnlv¥ C'(¥)
-(k+2) P ln— ) ) dx,

(1)

with respect to . The index » in eq. (21) stands
for the normal derivative with respect to ¥, j, is
defined by eq. (2) and C’'(¥) is derived from the
periodicity condition By,(0) = By, (2).

The stability codes use an “integer mesh”,
with rather arbitrarily defined x, such that 0 = x,
<...<xn,+1=2m, and a “half mesh” x; .,

=(xp + Xp+)/2 for k=1,...,N,. Similar inte-
ger and half meshes are used in the s-direction.

C.1. ERATO

For ERATO, all quantities of the equilibrium
involved in the stability calculation must be com-
puted at the centres of the stability mesh cells. In
table 2 all quantities with j > 6 are computed on
the (s;.1,2> Xk+1,2)-mesh, except at the plasma
edge. This is stored into an array EQ(j; k; /), for
k=1,...,N, and I=1,...,N,+ 1.

C.2. MARS

MARS uses finite differences in the radial and
Fourier decomposition in the poloidal and
toroidal directions. All equilibrium quantities
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Table 2 Table 3
Input quantities for ERATO Input quantities for MARS
i EQUi kD i EOL( )
i 5 <. sy |
2 I =J|B— | +——
3 s, forl# N +1ands, . | isfreefor/=N, +1 A ' r JATs|-
4 xi ¢ [V :
g . . y . . — Cyye Ty )
5 s 0=y+s )/2for =N +land s, =1 for > ov :‘/\(,, ,,)
I=N +1 g, r
6 xi-1,2=UO )2 Cus T
7 mass density p 3 N
8  plasma pressure yp /gl Wi | : ' ' ) 2
9 toroidal magnetic flux T 4 o 2 ( $ )
10 free \ R S
I q/q, N 18,
12 poloidal magnetic field ¥r> /g, TW¥ |~ 6 lg,,
13 non-orthogonality 8, =251V, | By, 7 J Zoo
14 r 8 1.8,
dln re Y o
15| = 10 Jjt=—2siw,  IT(F)
R 11 Jjt=—J[p ¥+ TONT (W) /r]
]( f,—-ln ’.h 12 J\B\ = 3“ ll/[“!n I
H T 13 JBY =T/
) ) 3 n( j/j) 14 )
[0 dln(r- dp
! H*Z“"W"""'(wwl_ T} ) " 4y = 2V )
! A

2w (s Jp [ In|Tw] dlnr
18 K=—- 5~ — - - p'l —
an VIV r s ; v

19 /7

; 20
2 [ M}
"

dy

d yJT
21— — dy’
as [f() r- X J\

22 non-orthogonality B3\ = 25| ¥,
field lines

awwa
d
(X v

| B, with straight

necessary for MARS are directly Fourier trans-
formed in the mapping. For this operation, we
apply the integration method described in section
4.1 to

1

s = O =5
f( nm, n ) 211' ¢\[/_—conslunl

f eim)( dXv (22)
where f represents any EQL in table 3. MARS
requires these quantities both on the half and the
integer mesh. All quantities in table 3 are ex-

pressed as function of the Jacobian

Jo= (Vs x Vx) - Vo] =25 (¥, 1/ (23)
and

Vs - Vy
T 251 Win | By, - (24)

where J is given by eq. (11) and B, by eq. (20).

C.3. Ballooning stability, Mercier and resistive in-
terchange criterion

Ballooning modes are toroidal modes with infi-
nite toroidal mode number n [17,18]. The poten-
tial energy for these modes is given by

N

87 (n ) = %/j{f

ay

+g1§|3}J dy.
(25)

where ¢ is the radial component of the displace-
ment vector, and y Is a generalized poloidal
angle extending from — o to +. For ballooning
stability, 8%, must be positive definite on cvery
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flux surface. The guantities appearing in eq. (25)
are [17]:
JT

v=—5,
r

Bz=ri2[T2+IVIIf]2],

; 1 (1 WW”Gj
= + <
2 2 2 ’
sivwil B _ (26)
2p’ (9P TG 1 {38
o\, BT ),

X ov
G=v + — | dy’,
B‘I/X j;([)( alP )X X

P= p+ %B 2,
The integral (25) is solved on the (¥, y)-mesh of
ERATO by a hybrid linear finite-element method.
The infinite y-integration interval of eq. (25) is
replaced by a finite one specified as input (nor-
mally 20 X 21) outside which £ is set to zero. For
the arbitrary angle y,, 25 different values are
tested on every constant-¥ surface. The diago-
nalization of the matrix corresponding to the
variation of problem (25) is not unique, but ac-
cording to Sylvester’s theorem [19], the number of
negative terms in the diagonal matrix is invariant
and equal to the number of unstable ballooning
modes on the particular poloidal flux surface.

The Mercier stability [20] and the resistive
interchange criterion [21] are checked on every
constant poloidal flux surface. Let us define the
integrals

1 1

Jo—— ————J dy,
! 2 ¢ilf:constanl r2 ' vy ' : X
1 1
Jo— ———J dy,
2 2 ¢‘lf=consta\m\vlp|z X
1 r?
J. = — Jdy,
3 2TT¢\I/:conslant,V1p|2 X
(27)
J ! ! Jd
4 2T ¢‘1’=constam r2 X
1
Js=— Jdyx,
3 2w ¥ = constant X
1 |vw|?
Jg= s—J dx.

27 7 w—constant ¥

A given flux surface is stable to ideal inter-
changes if the Mercier criterion —D, > 0, where

p'TI, 1)
_D1= - —

q’ 2

D
+F(Js’—p’13)(T2]1 +17,). (28)

Resistive interchanges are stable if — Dy > 0 with
2

_DR=_DI-(H—%) (29)

and

~ J(J,+ T2, (30)
L +TH, )

The prime in egs. (28) and (30) denotes the
derivative with respect to V.
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