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Neoclassical transport coefficients for general axisymmetric equilibria
in the banana regime
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Using the standard approach of neoclassical theory, a set of relatively simple kinetic equations has
been obtained, suited for an implementation in a numerical code to compute a related set of
distribution functions. The transport coefficients are then expressed by simple integrals of these
functions and they can be easily computed numerically. The code CQL3D@R. W. Harvey and M.
G. McCoy, inProceedings of IAEA Technical Committee Meeting on Advances in Simulation and
Modeling of Thermonuclear Plasmas, Montreal, 1992~International Atomic Energy Agency,
Vienna, 1993!, pp. 489–526#, which uses the full collision operator and considers the realistic
axisymmetric configuration of the magnetic surfaces, has been modified to solve the
bounce-averaged version of these equations. The coefficients have then been computed for a wide
variety of equilibrium parameters, high-lighting interesting features of the influence of geometry at
small aspect ratio. Differences with the most recent formulas for the ion neoclassical heat
conductivity are pointed out. A set of formulas, which fit the code results, is obtained to easily
evaluate all the neoclassical transport coefficients in the banana regime, at all aspect ratios, in
general axisymmetric equilibria. This work extends to all the other transport coefficients, at least in
the banana regime, the work of Sauteret al. @O. Sauter, C. Angioni, and Y. R. Lin-Liu, Phys.
Plasmas6, 2834~1999!# which evaluates the neoclassical conductivity and all the bootstrap current
coefficients. Formulas for arbitrary collisionality regime are proposed, obtained combining our
results for the banana regime with the results of Hinton and Hazeltine@F. L. Hinton and R. D.
Hazeltine, Rev. Mod. Phys.48, 239 ~1976!#, adapted for small aspect ratio. ©2000 American
Institute of Physics.@S1070-664X~00!02404-6#
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I. INTRODUCTION

Recent improvements in neoclassical transport the
are almost completely dedicated to parallel transport. In p
ticular, in Ref. 2, we have computed the neoclassical cond
tivity and all the bootstrap current coefficients, taking in
account the full collision operator and including the adve
tion parallel to the magnetic field, considering the realis
axisymmetric magnetic configuration of the flux surface. W
have given relatively simple formulas valid for general a
symmetric equilibria and arbitrary collisionality regimes. F
the other transport coefficients, improvements have b
done only on the ion thermal conductivity in the bana
regime4–6 and for various collision frequencies.7 Important
recent new results have been presented in Ref. 8, solvi
set of multispecies fluid equations: this enables one to c
pute the neoclassical conductivity, the bootstrap current
the particle and heat neoclassical fluxes, for arbitrary co
sionality and aspect ratio. However, a set of equations m
be solved in a specific code, which is not practically sui
for numerical implementation in one-dimensional tokam
transport modelling codes. Moreover, all these lat
results4–8 use an approximate collision operator, usually f
lowing the expansion method of Hirshman and Sigmar.9 This

a!Author to whom correspondence should be addressed. Electronic
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method was also used to compute the like–particle collisi
contribution on the viscosity matrix,4 and these results wer
applied in Ref. 10 to compute the bootstrap current coe
cients at low aspect ratio. When compared with Ref. 2, th
results are in very good agreement in general, but prese
non-negligible error on the bootstrap current coefficients
which the contribution given by the like–particle collisio
operator is particularly important.2 For all the electron per-
pendicular transport coefficients the only formulas availa
at small aspect ratio are those in Ref. 11, valid in the ban
regime, which use the analytical values of the transport
efficients ate51 and the values at large aspect ratio of R
12 to obtain a set of formulas with a linear interpolatio
between these two limits, which should be valid also at sm
aspect ratio. In the more recent investigations on the
thermal conductivity,5,6 the intermediate aspect ratio corre
tions show a difference with the results of Ref. 11 of almo
a factor of 2. In this sense a complete investigation of
small aspect ratio corrections for all the neoclassical tra
port coefficients, taking into account the full collision oper
tor, is necessary. It is well known that the neoclassical the
can not completely explain the perpendicular transport
tokamaks, however a precise computation is useful in or
to allow a correct evaluation of the anomalous contribut
by means of the comparison with the experimental data. T
is becoming even more important with the recent improv
il:
4 © 2000 American Institute of Physics
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confinement modes of operation, with internal transport b
riers and relatively small anomalous transport.

In Sec. II we describe the approach to obtain the lin
drift-kinetic equations suitable for implementation in
Fokker–Planck code and the expressions to compute
transport coefficient as simple integrals of the distribut
functions. The related bounce-averaged equations in the
nana regime are then obtained, and the Lorentz mode
investigated analytically. In Sec. III we show the numeric
results for the banana regime, computed with the Fokk
Planck code CQL3D,1 which solves the linearized drift ki
netic bounce-averaged equation with the full collision ope
tor and considering the realistic axisymmetric configurat
of the magnetic surfaces. Some benchmarks are consid
to validate the results, and the comparison with some pr
ous numerical and analytical results is shown. In Sec. IV
give a set of formulas which fit our numerical results a
allow to easily evaluate all the neoclassical transport coe
cients in general axisymmetric equilibria for arbitrary asp
ratio and ion charge in the banana regime. Combined for
las for arbitrary collisionality regime are then proposed in
last subsection.

II. KINETIC THEORY

A. Transport coefficients

Our approach follows the standard neoclassical the
in particular the one of Ref. 3. The flux surface averag
thermodynamic forces and their conjugated neoclass
fluxes are chosen as follows:

S Ge

dc

dr

Qe

Te

dc

dr

K j iB

Te
L 2 K j iSB

Te
L

2
I ~c!^E* B&ne
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S ^ j iRiB&
Ti
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Ti

dc
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D 5FL11
i L12

i

L21
i L22

i GS 2
^E* B&

^B2&

1

Ti

]Ti

]c

D . ~1b!

The right-hand side vectors of Eqs.~1a! and~1b! are, respec-
tively, the electron and ion forces, which will be referred
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
r-

r

he

a-
is
l
–

-
n
red
i-
e

-
t
u-
e

y,
d
al

Aen and Ain and the left-hand side vectors are their con
gated neoclassical fluxes, referred asBen and Bin . Gs and
Qs are the particle and heat fluxes of speciess, j i is the total
parallel electric current,j iS is the Spitzer current,j iRi is the
ion contribution to the so-called ‘‘return current,’’E* 8Ei

1Fi i(qini)
21 is the ‘‘effective electric field’’ andFi i is the

friction force between ions and electrons. We have calledr a
generic radial coordinate and^ & denotes the flux surface av
erage. The functionKi(c), of the magnetic poloidal fluxc,
is related to the flux surface average^ j iRiB& by the equation:
^ j iRiB&5qiKi(c)^B2&. Note that ion and electron forces an
fluxes are mutually dependent

Bi152I ~c!ne

Te

Ti
Ae4 , Be45I ~c!neAi1 . ~2!

The kinetic expressions of the conjugated neoclassical t
modynamic fluxes can be written in the following form:

Ben5K E dv~v ib̂•¹gen!S Ge2(
n

genAenf e0D L ,

n51,2,3,4, ~3!

Bin5 K E dvb in~Gi2g i2Ai2f i0!L , n51,2, ~4!

in which we have introduced the functions

ge15
I ~c!v i

Ve
, ge25ge1S v2

vTe
2 2

5

2D ,

ge35
v i f se

f e0
B, ge45ge1

B2

^B2&
,

b i15
qiv i

Ti
B, b i25v ib̂•¹~g i2!,

g i25
I ~c!v i

V i
S v2

vTi
2 2

5

2D .

The distribution functionsGe andGi are related to the first-
order perturbations,f e1 and f i1 , by means of two suitable
transformations. The first one follows Eqs.~5.42! and~5.43!
of Ref. 3, leading to the functionsHe and Hi . Then the
second one, simplyGe5He1SngenAenf e0 and Gi5Hi

1g i2Ai2f i0 , allows to write the Linearized Drift Kinetic
Fokker–Planck equations, Ref. 3, Eqs.~5.21!–~5.24!, in the
following simple form:

v ib̂•¹Ge2Ce0
l ~Ge!52(

n
Ce0

l ~genf e0!Aen , ~5!

v ib̂•¹Gi2Cii
l ~Gi !52b i1f i0Ai12Cii

l ~g i2f i0!Ai2 , ~6!

in which the collision operatorsCe0
l and Cii

l are, respec-
tively, defined in Eqs.~4.45! and ~1.19! of Ref. 3. Note that
these equations are particularly useful, as all the coefficie
of the thermodynamic forces in the source terms can
evaluated analytically13

2Ce0
l ~ge1f e0!5Zine0~v !ge1f e0 ,
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2Ce0
l ~ge2f e0!5Zine0~v !ge2f e0

2ne0~v !hS v
vTe

Dge1f e0 ,

2Ce0
l ~ge3f e0!5

qev iB

Te
f e0 , ~7!

2Ce0
l ~ge4f e0!5Zine0~v !ge4f e0 ,

2Cii
l ~g i2f e0!52n i0~v !hS v

vTi
D I ~c!v i

V i
f i0 ,

with

ne0~v !5
nei~v !

Z
5

3ApvTe
3

4Zitev
3 , n i0~v !5

3ApvTi
3

2&t iv
3

,

h~x!5~1024x2!erf~x!210x erf8~x!,

and, according to definitions given in Ref. 3

1

te
5

4

3
A2p

nie
4 ln L

me
1/2Te

3/2 ,
1

t i
5

4

3
Ap

niZi
4e4 ln L

mi
1/2Ti

3/2 . ~8!

Introducing the set of functionsgsn , in such a way that
Gs5SngsnAsn , Eqs.~5! and ~6! can be linearly decoupled

v ib̂•¹gen2Ce0
l ~gen!52Ce0

l ~genf e0!, n51,2,3,4.
~9!

v ib̂•¹gi12Cii
l ~gi1!52b i1f i0 , ~10a!

v ib̂•¹gi22Cii
l ~gi2!52Cii

l ~g i2f i0!. ~10b!

The kinetic definitions of the thermodynamic fluxes, Eqs.~3!
and ~4!, written in terms of the functionsgsn , allow to
readily identify the transport coefficients, introduced in E
~1!

Lmn
e 5 K E dvgemCe0

l ~genf e0!L
2 K E dv

gem

f e0
Ce0

l ~genf e0!L , n,m51,2,3,4,

~11!

L1n
i 5 K E dvginb i1L , n51,2,

L21
i 52 K E dv

gi1

f i0
Cii

l ~g i2f i0!L , ~12!

L22
i 5 K E dvg i2Cii

l ~g i2f i0!L 2 K E dv
gi2

f i0
Cii

l ~g i2f i0!L .

In this way we have obtained a simple set of expression
compute all the neoclassical transport coefficients, once
have solved the drift-kinetic equations, Eqs.~9! and ~10!, to
obtain the distribution functionsgen and gin . We see that
every expression is composed of the sum of two terms:
first one is an integral that can be computed analytically
that, for some coefficients, is identically zero; the second
has an integrand in which the only term to be compu
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
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numerically is the distribution functiongen or gin . Note that
in the banana regime the first term, computed analytica
gives directly the value of the transport coefficient ate51,
when all the particles are trapped; the second term gives
reduction of transport due to the presence of passing
ticles. In Appendix A we show that Eqs.~11! and~12! satisfy
the Onsager relations of symmetry as expected.

B. Banana regime: bounce-averaged equations

When the collision frequencynei is much smaller than
the bounce frequencynb , the distribution functionsgen can
be expanded as follows:

gen5gen
0 1S nei

nb
Dgen

1 1OF S nei

nb
D 2G ,

and analogously for the ion distribution functions. A som
what standard derivation3,12 shows that the functionsgsn

0 are
independent of the poloidal angleup , and that they are zero
in the trapped particle region of velocity space. In the pa
ing particle region, the functionsgsn

0 satisfy the following
bounce-averaged equations:

E
2p

p

dup

B

uv iu
Ce0

l ~gen
0 !5Sen , n51,2,3,4, ~13a!

E
2p

p

dup

B

uv iu
Cii

l ~gin
0 !5Sin , n51,2, ~13b!

with

Sen82ps^BCen
g ~v,B!& f e0 , n51,2,3,4, ~13c!

Si182ps
qi^B

2&
Ti

f i0, Si282ps^BCi2
g ~v,B!& f i0 ,

~13d!

wheres5v i /uv iu and where we have introduced the set
functionsCsn

g (v,B), defined as follows:

Csn
g ~v,B!8Cs

l ~gsnf s0!/~v i f s0!.

The analytical expressions of these functions can ea
be obtained from Eqs.~7!. Note that ^BCe4

g (v,B)&
5^BCe1

g (v,B)&, so that the functionsge1
0 and ge4

0 solve the
same equation in the banana regime; in particular it follo
that L445L14: This is a consequence of our choice of the
modynamic forces and fluxes. We see that ate51, when all
the particles are trapped, the distribution functionsgen

0 are
zero everywhere, and the first terms in the expressions
the transport coefficients, Eqs.~11! and ~12!, give directly
the entire coefficient. The code CQL3D has been modified
solve Eqs.~13! in general axisymmetric equilibria and wit
the full collision operator.

C. Lorentz model

For the Lorentz gas model,Zi@1, the set of Eqs.~13a! is
solved analytically.3,14 In fact, as collisions between elec
trons can be neglected, the collision operator can be appr
mated by the pitch-angle scattering operator:
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Ce0
l 5nei~v !L8nei~v !

1

2

]

]j
~12j2!

]

]j
and j8

v i

v
.

The solutions of Eq.~13a! in this approximation can be writ
ten in the following form:

gen
0 52s

v
2nei~v !

^BCen
g ~v,B!& f e0

3E
l

lc dl8

^~12l8B!1/2&
H~lc2l!, ~14!

wherel8(12j2)/B, lc81/Bmax andH(x) is the Heaviside
function. Introducing Eq.~14! in the expressions for the co
efficients Eqs.~11!, all the electron transport coefficients ca
be written as integrals in the absolute value of velocityv

Lmn
e 5

4p

3 E
0

`

v4dv K gem

v i
Cen

g L f e01pE
0

` v4dv
nei~v !

^BCem
g &

3^BCen
g & f e0 , n,m51,2,3,4.

The integrals ofv can easily be computed analytically, an
the results have been compared with Ref. 3, Eqs.~5.121!,
~5.124!–~5.130!, finding a complete agreement. As the Lo
entz model coefficients will be used not only as a benchm
for the results of CQL3D, but also to analyze the results
the code with the full collision operator and in different ax
symmetric configurations, we report all the electron transp
coefficients, which can be written in the following simp
form:

L11
e 520.5Ld@B0

2^B22&# f t
d , ~15a!

L21
e 50.75Ld@B0

2^B22&# f t
d ,

~15b!L22
e 52 13

8 Ld@B0
2^B22&# f t

d ,

L31
e 5L34

e 52Lbf t , L32
e 50,

~15c!

L33
e 52

32

3p
Ls@B0

22^B2&# f t ,

L41
e 5L44

e 520.5Ld@B0
2^B2&21# f t ,

~15d!L42
e 50.75Ld@B0

2^B2&21# f t .

with

Ld5
nerep

2

te
S dc

dr D 2

, Lb5I ~c!ne , Ls5
neqe

2te

meTe
B0

2,

~16!

and where we have introduced two definitions for the trap
fraction

f t
d512 3

4^B
22&21Il , f t512 3

4^B
2&Il ,

~17!

Il5E
0

lc l8dl8

^~12l8B!1/2&
.

The second one,f t , is the usual definition for the trappe
particle fraction.4 Note that the integralIl can easily be
evaluated using the formulas in Ref. 15. The poloidal gy
radiusrsp of speciess is given by
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
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rsp~r!5
vTs

uVspu
5

A2msTs

uqsuBp0~r!
, ~18!

like in Ref. 3, Eq.~5.122!, where the poloidal magnetic field
Bpo(r) is defined byBpo8(dc/dr)B0(c)/I (c), andB0(c)
is an arbitrarily chosen function introduced to normalize t
magnetic field on a given flux surface. Note that the fl
surface averaged integralsI 11, I 13, and I 33 which appear in
the results of Ref. 3 can be reduced to only the two trap
fractions, Eq.~17!, with the following relations:

I 115
4
3@B0

2^B22&# f t
d , I 135

4
3 f t , I 335

4
3@B0

22^B2&# f t .
~19!

We see, therefore, that all the coefficients in the Lore
model depend essentially onf t

d and f t . We shall show in the
next Sections that in the general case this property rem
true, namely that all the equilibrium effects on the neocl
sical transport coefficients are functions of only these t
trapped fractions.

III. NUMERICAL RESULTS

A. Benchmarks

As the Lorentz model gives an analytical solution, it c
be used as a first benchmark for the numerical results. In
1 we show the transport coefficientsL1n

e andL2n
e relative to

the sourcesSe1 andSe2 , Eqs.~13!, computed by CQL3D in
the approximation of the Lorentz model: very good agre
ment is obtained for alle. The coefficients in the Figure
indicated byLmn

e , are plotted normalized by the relative fa
tors Ld or Lb given in Eq.~16!. This normalization for the
electron transport coefficients is also kept in Figs. 2 and

FIG. 1. Transport coefficientsL1n
e andL2n

e for an almost cylindrical equi-
librium, computed by CQL3D in the approximation of the Lorentz mod
~circles!, and compared with the analytical results, Eq.~15!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and analogously in Fig. 3 for the ion transport coefficien
The complete definition of a set of dimensionless coefficie
will be given in the next section.

When the full collision operator is used, the symmetry
the transport matrix gives a second benchmark of the
merical results: indeed, each off-diagonal coefficient can
computed in two different ways,Lnm andLmn . Note that we
have already computed2 the neoclassical resistivity and th
bootstrap current coefficientsL3n , n51,2,4. In Fig. 2~a! we
plot the results for the coefficientL13

e , computed solving the
kinetic equation with the sourceSe1 , Eqs.~13a! and ~13c!,
n51: they are perfectly aligned with the solid line given b
Eq. ~14a! of Ref. 2, which fits the code results for the boo
strap current coefficientL31

e , hence computed with the
sourceSe3 , Eqs.~13a! and ~13c!, n53. The exact relations
between the bootstrap current coefficients defined in Re
and the transport coefficients defined in this paper will
presented in the next section. In Fig. 2~b! we plot the two
coefficientsL12

e andL21
e , computed considering four differ

ent equilibria, as shown in Fig. 1 of Ref. 2, and whose m
specifications and related symbols, full or open, used in
the figures, are given in Table I. The coefficientL12

e , ob-

FIG. 2. Onsager symmetry is correctly respected by the numerical res
~a! The transport coefficientL13

e ~symbols!, plotted vs f t , is well aligned
with the formula~14a! of Ref. 1 for the bootstrap current coefficientL31

e

~solid line!. The different symbols refer to different equilibria in all th
figures. Note that the results given by the different equilibria are perfe
overlapped, as they are plotted vsf t . ~b! Transport coefficientL12

e ~sym-
bols! andL12

e ~solid lines! computed with four different equilibria, plotted v
e1/2. Note that when the complete coefficients are plotted vs the inv
aspect ratio, a strong dependence on equilibria appears at small aspec

TABLE I. Equilibria specifications and related symbols used in the figur

Symbol Rmag @m# Rgeo @m# a @m# k d

s 2.13 2.13 1.925 1.0 0
h 8.44 8.00 2.750 1.8 0.32
x 1.67 1.22 0.875 3.0 0.56
v 0.92 0.88 0.252 2.5 20.65
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
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tained solving Eqs.~13a! and ~13c!, n51, is plotted with
symbols, the coefficientL21

e , obtained solving Eqs.~13a! and
~13c!, n52, is plotted with solid lines: we find a very goo
agreement between the two coefficients, within 1% fore
>0.1. We see also that the behavior of the transport coe
cient strongly depends on the equilibrium at small asp
ratio. Previous formulas, which give the transport coe
cients with an expansion in powers ofe1/2, are correct only
for almost cylindrical equilibria and are of practical intere
in general equilibria only fore,0.1: this must be taken into
account when comparing with our results. It indicates t
for each transport coefficient an appropriate geometrical
rameter, likef t for L31

e andL13
e in Fig. 2~a!, needs to be used

instead ofe, as it will be shown in the next subsection.

B. Comparison with previous results and behavior at
small aspect ratio

As we have said in Sec. I, the most recent investigati
on perpendicular neoclassical transport were dedicated
to the ion thermal conductivity.5,6 In Fig. 3 we compare our
results for the coefficientL22

i , obtained with an almost cy
lindrical equilibrium, with the results of Refs. 5, 6, and 1
As mentioned at the end of the previous paragraph, a cor
geometrical parameter must be chosen to plot a given tr
port coefficient. As it can be inferred from the Lorentz mod
results for the electron coefficientL22

e , Eq. ~15b!, and as it
will be presented later, the ion heat conductivity is a functi
of the trapped fractionf t

d , Eq. ~17!. We find good agreemen
with the most recent formulas of Refs. 5 and 6. These res
enable to finally resolve the discrepancy between the form
las given in Refs. 5 and 6, obtained with approximated c
lision operators. It turns out that the results with the f
collision operator, CQL3D, are in between the previous

ts.

y

e
tio.

.

FIG. 3. The ion heat conductivity, transport coefficientL22
i , computed by

CQL3D with an almost cylindrical equilibrium~solid circles!, divided by the
flux surface averageB0

2^B22&, plotted vs the trapped particle fractionf t
d and

compared with formulas of Ref. 3, CH 82~dashed–dotted line!, Ref. 4, T 88
~dashed line!, and Ref. 9~modified!, HHR 73 ~solid line!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



d
en
er
a
.

ed
nt

a

a

ffi
a
c
he

l,
ffi

es
m
e
er
t

la
ap
th
la

of
ply

tion
ra-

on,
f

. In
e of
ble

an
port

t

nt

-
e

1229Phys. Plasmas, Vol. 7, No. 4, April 2000 Neoclassical transport coefficients for general . . .
sults. Note that the plotted formula of Ref. 11 has been mo
fied, keeping in the expression for the transport coeffici
the flux surface average of the magnetic field, which w
correctly computed in the reference to obtain the limit
e51, but then not taken into account in the final formulas

When different axisymmetric equilibria are consider
in the numerical calculations, the transport coefficie
present particular features of the influence of geometry
small aspect ratio, as already highlighted in Fig. 2~b!. In Fig.
4 we also show the electron coefficientL22

e , computed with
the four different equilibria of Table I. In Fig. 4~a!, L22

e is
plotted versuse1/2: we see differences up to 30% already
e50.15. In Fig. 4~b! we show the same coefficientL22

e di-
vided by the flux surface average (B0

2^B22&) and plotted
versus the trapped particle fractionf t

d , defined in Eq.~17!, as
suggested by the results of the Lorentz model: the points
well-aligned at all f t

d , i.e., at all e. The same behavior is
obtained for all the other transport coefficients: the coe
cients must be normalized by a suitable flux surface aver
and a correct geometrical parameter must be used to en
sulate the effects of the different equilibria. Note that t
definition of a new trapped particle fraction,f t

d , Eq. ~17!, is
effectively necessary, as suggested by the Lorentz mode
correctly describe the geometrical behavior of certain coe
cients, in particular all the particle and heat conductiviti
for which the usual one,f t , turns out to be inadequate. Fro
Fig. 4 it is also evident that, when plotted versus the corr
parameter, the transport coefficients turn out to be v
simple functions, almost proportional to the appropria
trapped fraction. This explains the relatively simple formu
of Ref. 2 for the electrical conductivity and the bootstr
current coefficients, and will be completely presented in
next section and shown in Fig. 5, for all the perpendicu

FIG. 4. The transport coefficientL22
e , main contribution to the electron hea

conductivity, computed by CQL3D with four different equilibria:~a! The
complete coefficient is plotted vse1/2, a strong dependence on the differe
equilibria appears at small aspect ratio;~b! the coefficient is divided by an
appropriate flux surface averageB0

2^B22&, and plotted vs the correct geo
metrical parameter,f t

d , which allows to perfectly align all the points of th
different equilibria.
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transport coefficients. Hence the study of the effects
plasma shape on the neoclassical transport can be sim
obtained considering the dependence of the trapped frac
on plasma elongation and triangularity at a given aspect
tio. Both the two given expressions for the trapped fracti
f t and f t

d , Eq. ~17!, turn out to be almost independent o
elongation, and increasing when decreasing triangularity
this sense, in the neoclassical transport, at a given valu
the aspect ratio, a highly triangular plasma shape is favora
for confinement, as shown in Figs. 2~b! and 4~a! ~symbolx!,
but not favorable for driving bootstrap current.

IV. TRANSPORT COEFFICIENTS FORMULAS

A. Analytical fits to the numerical results for the
banana regime

Considering the results of the previous section, we c
introduce a set of dimensionless electron and ion trans
coefficientsKmn

s

Lnm
e 5Ld@B0

2^B22&#Knm
e ~ f t

d!, n,m51,2, ~20a!

Ln3
e 5LbKn3

e ~ f t!, n51,2,4, ~20b!

Ln4
e 5Ld@B0

2^B2&21#Kn4
e ~ f t!, n51,2, ~20c!

L33
e 5Ls@B0

22^B2&#K33
e ~ f t!, ~20d!

L11
i 5Ls

i @B0
22^B2&#K11

i ~ f t!, ~20e!

L12
i 5Lb

i K12
i ~ f t!, ~20f!

FIG. 5. Computed values of the dimensionless transport coefficientsKmn
s

~symbols!, compared with the fitting formulas, Eqs.~23! and ~24! ~solid
lines!. ~a! CoefficientsK11

e plotted vsf t
d ~solid symbols!, andK14

e plotted vs
f t ~open symbols!. ~b! CoefficientsK12

e andK21
e , plotted vsf t

d ~solid sym-
bols!, andK24

e plotted vsf t ~open symbols!. ~c! CoefficientK22
e plotted vsf t

d

~solid symbols!. ~d! CoefficientK22
i plotted vsf t

d ~solid symbols!.
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L22
i 5Ld

i @B0
2^B22&#K22

i ~ f t
d!, ~20g!

and analogously all their symmetrics, whereLd , Lb , andLs

are defined by Eq.~16!; the ion normalization factors,Ld
i ,

Lb
i , andLs

i , are defined as follows:

Ld
i 5

nir ip
2

t i
S dc

dr D 2

, Lb
i 5I ~c!ni , Ls

i 5
niqi

2t i

miTi
B0

2.

~21!

The dimensionless coefficients are functions of only o
suitable geometrical parameter, i.e., a trapped fraction, wh
completely encapsulates the effects of the various equilib
in this way the code results for the coefficientsKmn

s can be
fitted in terms of the appropriate trapped fraction,f t or f t

d , as
they perfectly overlap, regardless the equilibrium conside
in the calculation, even highly noncircular and at small
pect ratio. Note that only in this way relatively simple fo
mulas valid in general axisymmetric equilibria and at all a
pect ratios can be given. We have already computed
neoclassical conductivity and the bootstrap current coe
cients, in Ref. 2, solving the same kinetic equation of E
~13a!, n53, and computing the transport coefficients w
the same integrals given by Eq.~11!, n53, and Eq.~12!, n
52, m51, which were first obtained using an adjoi
formalism13 adapted to calculate only the bootstrap curre
the general kinetic results of Sec. II show, however, that
adjoint formulation is not necessary. The relations betw
the transport coefficientL33

e and the neoclassical conductiv
ity sneo, Eq. ~13a! in Ref. 2, and between the dimensionle
coefficientsK3m

e , m51,2,4, and the bootstrap current coe
ficientsL3m

bs , Eqs.~14! and ~15! in Ref. 2, read

L33
e 5

sneo2sSptz

Te
^B2&, K3m

e 52L3m
bs . ~22!

The coefficientK12
i is related to the coefficienta, Eqs.~17a!

and ~17b! in Ref. 2, by Eq.~25!. @Note: 20.315 should be
replaced by10.315 in Eq.~17b!.# We have run the code
CQL3D with different equilibria and for the electron coeffi
cients we have also varied the ion charge, to obtain the
pendence on the effective chargeZ. Our idea is that, at leas
for the electron transport coefficients, an effective cha
approximation for multispecies cases should still be va
collisions between electrons and main ions, or between e
trons and impurity ions are almost of the same kind, invo
ing basically the pitch-angle scattering. In any case, the c
parison with the results of multispecies codes8 should enable
one to determine the correct form ofZ, instead of the usua
definition of Zeff , to be used in our formulas, as alrea
mentioned in Ref. 2. For the ions, the presence of one he
impurity species leads to collisions between main ions
impurity ions which involve basically the pitch-angle scatte
ing, and which are completely different from like–partic
collisions. In this case, as shown in Ref. 16, the therm
conductivity computed asZeff times the pure ion conductiv
ity is underestimated. Using the results of Ref. 16, wh
uses the large aspect ratio limit of Ref. 17, we have gene
ized our formula for the transport coefficientL22

i , to include
the effect of a single heavy impurity species in the Pfirsc
Schlüter regime. We have also adapted the formula for
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bootstrap current coefficienta in the banana regime, Eq
~17a! in Ref. 2, to include the same effect, using the lar
aspect ratio limit of Ref. 17, and noting that ate51 not only
the pure plasma coefficient, but also the impurity contrib
tion must be equal to zero. The analytical fits to the results
CQL3D for all the transport coefficients not already com
puted in Ref. 2, valid in the banana regime, for arbitra
trapped fraction andZ, and the modified formula for the
bootstrap current coefficienta, read as follows:

K11
e ~ f t

d!520.5F11~ f t
d!, ~23a!

K12
e ~ f t

d!50.75F12~ f t
d!, ~23b!

K14
e ~ f t!5K44

e 520.5F11~ f t!, ~23c!

K22
e ~ f t

d!52S 13

8
1
&

2ZDF22~ f t
d!, ~23d!

K24
e ~ f t!50.75F12~ f t!, ~23e!

K22
i ~ f t

d!52F22
i ~ f t

d!, ~23f!

F11~X!8S 11
0.9

Z10.5DX2
1.9

Z10.5
X2

1
1.6

Z10.5
X32

0.6

Z10.5
X4, ~24a!

F12~X!8S 11
0.6

Z10.5DX2
0.95

Z10.5
X2

1
0.3

Z10.5
X31

0.05

Z10.5
X4, ~24b!

F22~X!8S 12
0.11

Z10.5DX1
0.08

Z10.5
X21

0.03

Z10.5
X3,

~24c!

F22
i ~X!8~120.55!~111.54a I !X

1~0.75X220.7X310.5X4!~112.92a I !,
~24d!

a~ f t!52K12
i 52

0.6211.5a I
0.531a I

12 f t

120.22f t20.19f t
2 ,

~25!

wherea I 5nIZI
2/niZi

2 is the usual impurity strength param
eter, and indexI refers to the ion impurity species. The fa
torizations used in Eqs.~23! and ~24! are such that the Lor-
entz limit (Z→`), the low (f t→0) and the large aspec
ratio (f t→1) are easily recovered. Moreover the functio
Fi j have values within@0,1#. Note thatK11

e andK14
e , as well

asK12
e andK24

e have the same functional dependence on th
respective trapped fraction. These relations can be con
ered as the extension to a general axisymmetric equilibr
at all aspect ratios of Eqs.~6.28!–~6.30! and Eq.~6.47! in
Ref. 3. We have also computed the coefficientL11

i , which is
usually not considered, following the weak-coupling a
proximation, which neglects the forceAi1 . For complete-
ness, we give also the fit to the code results for the trans
coefficientK11

i

K11
i ~ f t!5~0.1111.7f t21.25f t

210.44f t
3!2121.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Note that Eq.~2! allows to reduce the number of independe
thermodynamic forces from 6 to 4, hence with only 4 con
gated thermodynamic fluxes. Taking the first 3 electr
forces and the second ion force, whose conjugated flu
have more direct physical meaning and more direct appl
tion in the fluid transport equations, the relations which co
nect fluxes with forces read as follows:

Ben5 (
m51

3 HLnm
e 2

1

F
Ti

Zi
2Te

L11
i Ln4

e

@ I ~c!ni #
2J Aem

2
1

F
Ti

ZiTe
Ln4

e
L12

i

I ~c!ni
Ai2 , n51,2,3, ~26a!

Bi25
1

F
L21

i

I ~c!ni
(

m51

3

L4m
e Aem

1HL22
i 2

1

F
Ti

Zi
2Te

L12
i L21

i

@ I ~c!ni #
2 L44

e J Ai2 , ~26b!

where

F811
Ti

Z1
2Te

L11
i L44

e

@ I ~c!ni #
2 ,

andZi is the main ion charge number. The condition for t
validity of the weak-coupling approximation is given by E
~5.86! in Ref. 3, and is simplyF21!1. Introducing the
dimensionless coefficientsKmn

s , this relation reads, consis
tently with the estimate given in Ref. 3, Table IV

2&

Zi
S me

mi
D 1/2S Ti

Te
D 3/2

K14
e K11

i !1. ~27!

The absolute value of the termK14
e K11

i turns out to be smalle
then 0.25, which confirms the validity of the weak coupli
approximation in the banana regime. In this way Eq.~26! are
reduced to:

Ben5 (
m51

3

Lnm
e Aem2

Ti

ZiTe
Ln4

e
L12

i

I ~c!ni
Ai2 , n51,2,3,

~28a!

Bi25
L21

i

I ~c!ni
(

m51

3

L4m
e Aem

1HL22
i 2

Ti

Zi
2Te

L12
i L21

i

@ I ~c!ni #
2 L44

e J Ai2 . ~28b!

In Fig. 5 we compare the code results for the dimension
transport coefficientsKnm

s ~symbols! with the algebraic for-
mulas, Eqs.~23! and ~24!, which fit the data,~solid lines!.

B. Combined formulas for all collisionality regimes

In order to compute the neoclassical transport coe
cients at arbitrary collisionality regime, the nonbounc
averaged kinetic equations, Eqs.~9! and ~10!, must be
solved. This, as already mentioned, has been done in Re
to compute the neoclassical resitivity and all the bootst
current coefficients, using the code CQLP, which includ
the advection parallel to the magnetic field, without any
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
t
-
n
es
a-
-

ss

-
-

2,
p
s
-

sumption on the ratio between the collision frequency a
the bounce frequency. In order to strictly compare only
dependence on collisionality, in Fig. 6 we have plotted f
mulas of Ref. 2~solid lines! and those of Ref. 3, Sec. VI F
~dashed lines!, in which we have replaced the banana lim
with the correct results of the code CQL3D. The neoclass
resistivity is shown in Fig. 6~a! and the bootstrap curren
coefficientL31

e in Fig. 6~b!, for three values of the trappe
fraction. At low aspect ratio there is a very good agreeme
which falls down at larger values of the trapped fractio
This comes from the main approximation adopted to co
pute the banana-plateau regime, in Ref. 18, which negl
the energy scattering in the like-particle collision opera
and which underestimates the neoclassical transport at
aspect ratio.7 However, for both the neoclassical resistivi
and the bootstrap current coefficientL31

e , and also for the
coefficientL32

e not shown here, the Ref. 3 formulas go dow
to zero at smaller values ofne* with respect to the rigorous
results of Ref. 2, with approximately the same behavi
When the collisional parameterns* , defined in Ref. 2, Eq.
~18!, is rescaled in terms of the trapped fraction with t
simple transformation

ns f* 5
ns*

117 f t
2 , ~29!

Ref. 3 formulas allow an agreement within 20% for all th
bootstrap current coefficients and the neoclassical resist
~dashed–dotted lines!, comparing with Ref. 2. Hence, fol
lowing the idea of Ref. 5, in which a formula valid for a
collisionality regimes for the ion heat conductivity is ob
tained connecting a new banana limit, valid also at sm
aspect ratio, with the collisional dependence of Ref. 3,
propose to combine formulas of Ref. 3, Sec. VI F, adapted

FIG. 6. Dependence on collisionality for the transport coefficientssneo, ~a!
andL31

e , ~b!, for different values of the trapped fractionf t , as given by Ref.
1 ~solid lines!, by Ref. 12, with the value atne* 50, banana limit, corrected
with the results of Ref. 1~dashed lines!, and still by Ref. 12, with also the
collisional parameter rescaled by Eq.~29! ~dashed–dotted lines!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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small aspect ratio, with the results of this paper in the limi
ns* 50. The electron transport coefficientsKmn

e , m,n51,2
can be computed at arbitrary collisionality regimes as f
lows:

K11
e ~ f t

d ,ne* !5H11
e , K12

e ~ f t
d ,ne* !5H12

e 2 5
2H11

e ,

K22
e ~ f t

d ,ne* !5H22
e 25H12

e 1 25
4 H11

e , ~30a!

Hmn
e ~ f t

d ,ne* !5
Hmn

e~0!~ f t
d ,ne* 50!

11amn~Z!ne f*
1/2 1bmn~Z!ne f*

2
dmn~Z!ne f* f t

d3
~11 f t

d6
!

11cmn~Z!ne f* f t
d3

~11 f t
d6

!
FPS,

~30b!

where the banana limit coefficientsHmn
e(0)( f t

d ,ne* 50) can be
readily evaluated using Eqs.~23! and ~24!, with

H11
e~0!5K11

e ~ f t
d!, H12

e~0!5K12
e ~ f t

d!1 5
2K11

e ~ f t
d!,

~30c!H22
e~0!5K22

e ~ f t
d!15K12

e ~ f t
d!2 25

4 K11
e ~ f t

d!.

The coefficientsK4n
e are given by

K41
e ~ f t ,ne* !5H41

e , K42
e ~ f t ,ne* !5H42

e 2 5
2H41

e , ~30d!

H4n
e ~ f t ,ne* !5F H4n

e~0!~ f t ,ne* 50!

11a1n~Z!ne f*
1/2 1b1n~Z!ne f*

2
d1n~Z!ne f* f t

3~110.8f t
3!

11c1n~Z!ne f* f t
3~110.8f t

3!
FPS

~4!G
3

1

11ne f*
2 f t

12 ~30e!

where analogously

H41
e~0!5K41

e ~ f t!, H42
e~0!5K42

e ~ f t!1 5
2K41

e ~ f t!, ~30f!

and with

FPS512
1

^B2&^B22&
, FPS

~4!5^B22&^B2&21. ~30g!

The ion thermal conductivityK22
i is given by

K22
i ~ f t

d ,n i* !5
K22

i ~ f t
d!

11a2m i f *
1/2 1b2m i f *

2
d2m i f * f t

d3
~11 f t

d6
!

11c2m i f * f t
d3

~11 f t
d6

!
HPFPS, ~30h!

with16 m i f * 5n i f * (111.54a I) and HP5111.33a I(1
10.60a I)/(111.79a I). The coefficientsamn(Z), bmn(Z),
cmn(Z), anddmn(Z) are given in Appendix B, obtained b
interpolation of the data given in Ref. 3, Table III for th
electron coefficients and below Eq.~6.133! for the ion coef-
ficient. The dependence one of the plateau-collisional term
of the formulas of Ref. 3, first computed in Ref. 19, has be
rescaled onf t or f t

d . Finite aspect ratio effects in these term
have been taken into account, like in Ref. 5, introducing
complete expression of the Pfirsch–Schlu¨ter geometrical fac-
tor, by means ofFPS and FPS

(4) , Eq. ~30g!. Note that Eq.
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
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~30h! for the ion thermal conductivityK22
i includes the ef-

fects of a single heavy impurity species in the Pfirsc
Schlüter regime, according to Ref. 16, using the modified i
collisionality parameterm i f * and the factorHP , which take
into account the enhancement of main ion thermal trans
due to the presence of the impurity species.16

V. CONCLUSION

We have presented an approach for the neoclass
transport theory which allows to obtain simple equatio
suited for implementation in numerical codes in order
compute all the neoclassical transport coefficients. The c
CQL3D, solving the bounce-averaged linearized drift-kine
Fokker–Planck equation with the full collision operator, h
been modified to calculate all these coefficients at all asp
ratios of various axisymmetric equilibria in the banana
gime. We have shown that the limits at large and unit asp
ratio are correctly respected by the numerical results, as
the Onsager symmetry of the nondiagonal transport coe
cients. Investigating the dependence of the coefficients
geometry parameters, we have shown that appropriate
nitions of trapped fractions are required in order to encap
late all the geometry effects in a single variable. In this w
a set of simple formulas can be obtained from the numer
results and allow the evaluation of any transport coeffici
for every axisymmetric equilibrium and at all aspect ratio
Our formula for the ion thermal conductivity is in goo
agreement with the most recent evaluations of t
coefficient,5,6 which, however, do not use the full collisio
operator, with errors at finite aspect ratio of about 10%
excess and by defect, respectively. For all the other perp
dicular transport coefficients, in particular the electron th
mal conductivity, our formulas are the only existing to da
and to our knowledge, computed for general axisymme
equilibria taking into account finite aspect ratio effects. T
transport coefficients formulas, which fit the numerical r
sults in the banana regime, are given by Eqs.~20!–~24! of
Sec. IV A. Extension of this work is to compute the transp
coefficients at all collisionality regimes: note that this h
already been done for the neoclassical conductivity and
bootstrap current coefficients in Ref. 2. These results, co
pared with the ones of Refs. 3 and 5, have motivated u
propose combined formulas for all the other transport co
ficients, valid for arbitrary collisionality regime, needed
correctly evaluate these coefficients over the whole plas
minor radius. The thermodynamic fluxes

Be15Ge

dc

dr
, Be25

Qe

Te

dc

dr
,

Be35
^ j iB&

Te
2

^ j iSB&
Te

, Bi25
Qi

Ti

dc

dr
,

whereGe is the perpendicular electron particle flux,Qe is the
electron perpendicular heat flux,j i and j iS are the parallel
electric current and the Spitzer current, andQi is the ion
perpendicular heat flux, are given by Eqs.~28!, in the weak
coupling approximation, whose validity is confirmed by E
~27!. Equations~28! can be reordered, and the thermod
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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namic fluxes can be expressed directly in terms of the e
tron and ion temperature and density perpendicular gradi
and the parallel electric field

Ben5Ln1
e ] ln ne

]c
1~Ln1

e 1Ln2
e !

] ln Te

]c

1
12Rpe

Rpe
Ln1

e ] ln ni

]c
1

12Rpe

Rpe
~Ln1

e 1aLn4
e !

3
] ln Ti

]c
1Ln3

e ^EiB&

^B2&
, n51,2,3,

Bi25
Qi

Ti

dc

dr
5a FL41

e ] ln ne

]c
1~L41

e 1L42
e !

] ln Te

]c

1L41
e 12Rpe

Rpe

] ln ni

]c
1L43

e ^EiB&

^B&2

1S L22
i 1

12Rpe

Rpe

a2

Zi
L44

e D ] ln Ti

]c
,

whereRpe8pe /p andZi is the main ion charge number. Th
perpendicular transport coefficientsLmn

s , for general axi-
symmetric equilibria and arbitrary collisionality regime, a
given by Eqs.~30! of Sec. IV B in terms of the trapped
fractions f t or f t

d , Eq. ~17!, the collisionality parametern*
and the effective charge numberZ. The neoclassical conduc
tivity and the bootstrap current coefficients,L3n

e and a, are
connected with formulas of Ref. 2 by Eqs.~22! and ~25!.
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APPENDIX A: ONSAGER SYMMETRY OF THE
TRANSPORT COEFFICIENTS

The expressions for the transport coefficients given
Eq. ~11! for the electrons and by Eq.~12! for the ions satisfy
the Onsager relations of symmetry, as expected.3 We begin
with the electron case. In Eq.~11!, the first term,
Lmn

e(1)8^*dvgemCe0
l (genf e0)&, is symmetric directly from

the self-adjointness of the collision operator. Hence

Lmn
e~1!8 K E dvgemCe0

l ~genf e0!L
5 K E dvgenCe0

l ~gemf e0!L 8Lnm
e~1! . ~A1!

For the second term,Lmn
e(2)8^*dvgem/ f e0Ce0

l (genf e0)&, we
shall rewrite it in a symmetric form. Introducing the follow

ing notation,3 for a generic function f (v), f 18 1
2@ f (s

511)1 f (s521)# is its even part ins5v i /uv iu and

f 28 1
2@ f (s511)2 f (s521)# is the odd part, so that
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uv iub̂•¹g
en

12Ce0
l ~gen

2 !52Ce0
l ~genf e0!,

uv iub̂•¹g
en

22Ce0
l ~gen

1 !50 ~A2!

@as Ce0
l (genf e0)25Ce0

l (genf e0) and Ce0
l (genf e0)150,

n51,2,3,4#
we can perform the following derivation:

Lmn
e~2!8 K E dv

gem

f e0
Ce0

l ~genf e0!L
5K E dv

gem
2

f e0
Ce0

l ~genf e0!2L
52K E dv

gem
2

f e0
@v ib̂•¹gen

1 2Ce0
l ~gen

2 !#L
52 K Edv

1

f e0
@2gem

1 uv iub̂•¹gen
2 2gem

2 Ce0
l ~gen

2 !#L
52 K E dv

1

f e0
@2gem

1 Ce0
l ~gen

1 !2gem
2 Ce0

l ~gen
2 !#L

5 K E dv
1

f e0
gemCe0

l ~gen!L ,

which is a symmetric expression, using the self-adjointn
of the collision operator.~Note that we have used in thi
derivation the fact that the operator2v ib̂•¹ is the adjoint of
the operatorv ib̂•¹.) Hence we can conclude that

Lmn
e~2!5 K E dv

1

f e0
gemCe0

l ~gen!L
5 K E dv

1

f e0
genCe0

l ~gem!L 5Lnm
e~2! , ~A3!

which shows the symmetry of the coefficientsLmn
e . A some-

what analogous calculation can be performed for the ion
efficientsL12

i andL21
i , which shows that the two given ex

pressions, Eq.~12!, satisfy the following relation:

L12
i 52L21

i , ~A4!

consistently with the result in Ref. 3, Eq.~5.99!.

APPENDIX B: COEFFICIENTS FOR THE COMBINED
FORMULAS OF SEC. IV B

The coefficientsamn(Z), bmn(Z), cmn(Z), anddmn(Z)
for the electron transport coefficients are defined as follo

a11~Z!5
113Z

0.7711.22Z
,

~B1a!

a12~Z!5
0.7210.42Z

110.5Z
, a22~Z!50.46,

b11~Z!5
111.1Z

1.37Z
, b12~Z!5

11Z

2.99Z
,

~B1b!

b22~Z!5
Z

2315.32Z
,
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c11~Z!5
0.110.34Z

1.65Z
, c12~Z!5

0.2710.4Z

113Z
,

~B1c!

c22~Z!5
0.2210.55Z

2117Z
,

d11~Z!5
0.23Z

2113.85Z
,

~B1d!

d12~Z!5
0.2210.38Z

116.1Z
, d22~Z!5

0.2510.05Z

110.82Z
.

For the ion thermal conductivity, the coefficients are

a251.03, b250.31, c250.22, d250.175. ~B2!
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