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Using the standard approach of neoclassical theory, a set of relatively simple kinetic equations has
been obtained, suited for an implementation in a numerical code to compute a related set of
distribution functions. The transport coefficients are then expressed by simple integrals of these
functions and they can be easily computed numerically. The code CQR3W. Harvey and M.

G. McCoy, inProceedings of IAEA Technical Committee Meeting on Advances in Simulation and
Modeling of Thermonuclear Plasmas, Montreal, 19@@ternational Atomic Energy Agency,
Vienna, 1993 pp. 489-52§ which uses the full collision operator and considers the realistic
axisymmetric configuration of the magnetic surfaces, has been modified to solve the
bounce-averaged version of these equations. The coefficients have then been computed for a wide
variety of equilibrium parameters, high-lighting interesting features of the influence of geometry at
small aspect ratio. Differences with the most recent formulas for the ion neoclassical heat
conductivity are pointed out. A set of formulas, which fit the code results, is obtained to easily
evaluate all the neoclassical transport coefficients in the banana regime, at all aspect ratios, in
general axisymmetric equilibria. This work extends to all the other transport coefficients, at least in
the banana regime, the work of Saugdral. [O. Sauter, C. Angioni, and Y. R. Lin-Liu, Phys.
Plasmas, 2834(1999] which evaluates the neoclassical conductivity and all the bootstrap current
coefficients. Formulas for arbitrary collisionality regime are proposed, obtained combining our
results for the banana regime with the results of Hinton and HazdlEné&. Hinton and R. D.
Hazeltine, Rev. Mod. Physi8, 239 (1976, adapted for small aspect ratio. @000 American
Institute of Physicq.S1070-664X00)02404-4

I. INTRODUCTION method was also used to compute the like—particle collisions
) ] ) contribution on the viscosity matrfkand these results were

Recent improvements in neoclassical transport theory,jyjieq in Ref. 10 to compute the bootstrap current coeffi-

are almost completely dedicated to parallel transport. In PalZiants at low aspect ratio. When compared with Ref. 2, these

fivit d all the bootst M Hicients. taking i tcr'esults are in very good agreement in general, but present a
Ity and all the booistrap current coetlicients, taxing in Onon-negligible error on the bootstrap current coefficients in

account the full collision operator and including the advec- . oo . : ) -
. g S .~ which the contribution given by the like—particle collision
tion parallel to the magnetic field, considering the realistic

axisymmetric magnetic configuration of the flux surface. Weopera_ltor is particularly |m_p9rtaﬁtFor all the electron per
pendicular transport coefficients the only formulas available

have given relatively simple formulas valid for general axi- t I ¢ rati th in Ref. 11. valid in the b
symmetric equilibria and arbitrary collisionality regimes. For &t Small aspect ratio are those in Ret. 11, valid in thé banana
gime, which use the analytical values of the transport co-

the other transport coefficients, improvements have beeﬁe, ) ]
done only on the ion thermal conductivity in the banana€fficients ate=1 and the values at large aspect ratio of Ref.

regimé~® and for various collision frequenciésmportant 12 to obtain a set .of.formu-las with a Iinear interpolation
recent new results have been presented in Ref. 8, solving hetween these two limits, which should be valid also at small
set of multispecies fluid equations: this enables one to con@SPect ratio. In the more recent investigations on the ion
pute the neoclassical conductivity, the bootstrap current anéhermal conductivity’® the intermediate aspect ratio correc-
the particle and heat neoclassical fluxes, for arbitrary collitions show a difference with the results of Ref. 11 of almost
sionality and aspect ratio. However, a set of equations musgt factor of 2. In this sense a complete investigation of the
be solved in a specific code, which is not practically suitedsmall aspect ratio corrections for all the neoclassical trans-
for numerical implementation in one-dimensional tokamakport coefficients, taking into account the full collision opera-
transport modelling codes. Moreover, all these lattertor, is necessary. It is well known that the neoclassical theory
result4~8 use an approximate collision operator, usually fol-can not completely explain the perpendicular transport in
lowing the expansion method of Hirshman and Sigitiinis ~ tokamaks, however a precise computation is useful in order
to allow a correct evaluation of the anomalous contribution
dAuthor to whom correspondence should be addressed. Electronic maipy means of the comparison with the experimental data. This
Clemente.Angioni@epfl.ch is becoming even more important with the recent improved
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confinement modes of operation, with internal transport barA.,, and A;, and the left-hand side vectors are their conju-
riers and relatively small anomalous transport. gated neoclassical fluxes, referreds, andB;,. I', and

In Sec. Il we describe the approach to obtain the lineaQ,, are the particle and heat fluxes of specige§, is the total
drift-kinetic equations suitable for implementation in a parallel electric current,s is the Spitzer curreni,r; is the
Fokker—Planck code and the expressions to compute thien contribution to the so-called “return currentf, =E,
transport coefficient as simple integrals of the distribution+ F;,(q;n;) ! is the “effective electric field” andF;; is the
functions. The related bounce-averaged equations in the bériction force between ions and electrons. We have called
nana regime are then obtained, and the Lorentz model igeneric radial coordinate ard denotes the flux surface av-
investigated analytically. In Sec. Ill we show the numericalerage. The functioiK;(#), of the magnetic poloidal flux,
results for the banana regime, computed with the Fokker-is related to the flux surface averaggr;B) by the equation:
Planck code CQL3D,which solves the linearized drift ki- (j,=iB)=0;K;(#)(B?). Note that ion and electron forces and
netic bounce-averaged equation with the full collision operafluxes are mutually dependent
tor and considering the realistic axisymmetric configuration
of the magnetic surfaces. Some benchmarks are considered p _ _ E — )

. \ . 20 Bir= =l ()NeAes,  Bea=1(#h)NA 1. (2

to validate the results, and the comparison with some previ- T

ous numerical and analytlc.al re_sults 1S show_n. In Sec. IV Werpe yinetic expressions of the conjugated neoclassical ther-
give a set of formulas which fit our numerical results andmodynamic fluxes can be written in the following form:
allow to easily evaluate all the neoclassical transport coeffi- '

cients in general axisymmetric equilibria for arbitrary aspect _ ~
ratio and ion charge in the banana regime. Combined formu- Ben={ | AV(viD-Ven) Ge_g YerPenfeo | |
las for arbitrary collisionality regime are then proposed in the

last subsection. n=1,2,3,4, ©)
Il. KINETIC THEORY Bin:<fdVBin(Gi_YizAizfi0)>a n=12, 4
A. Transport coefficients in which we have introduced the functions
Our approach follows the standard neoclassical theory, () 2 5
in particular the one of Ref. 3. The flux surface averaged 1= 4 U”, 7e2=7e1(v—2— _)’
thermodynamic forces and their conjugated neoclassical Qe vTe 2
fluxes are chosen as follows: 9
y :UHfseB Yes= 7 B
r ﬂ e3 fo e4 el<B )’
edp
e e e e iU ~
Qe dy il iz (193 i“ BilzyB: Biz=vb-V(¥i2),
Te dp 21 +~22 ~23 A4 '
. . = 2
1B JisB 1 L5, LS55 L5 Ny (v 5
<'T'—> ‘< T > o e e g Ya=Ta |07 2)
e e s Lap Lag Lag ' T
_(P(ELB)ne The distribution functionsS, andG; are related to the first-
(B%) order perturbationsfe; and f;;, by means of two suitable
transformations. The first one follows Eq5.42 and(5.43
i%+iﬂ of Ref. 3, leading to the functionsl, and H;. Then the
Pe d¢Y  Pe IY second one, sSiMplyG.=H+3,YerAenfeo and G;=H;
1 4T, + vi0Aiofig, allows to write the Linearized Drift Kinetic
T—ew Fokker—Planck equations, Ref. 3, E§5.21)—(5.24), in the
X , (1a) following simple form:
(EB)
TRy R
(8% 0iB-VG~Clo(G) =~ ClolYerle)Aens ()
niTe () (B%) A [ I
e vb-VGi—=Cji(Gj) = — BirfioAir— Cii (vi2fio) Az, (6)
(11riB) A (E+B) in which the collision operator€l, and C|; are, respec-
Ti | A 12 (B%) tively, defined in Egs(4.45 and(1.19 of Ref. 3. Note that
Q dy | L‘i21 £i22 1 4T, ' (1b) these equations are particularly useful, as all the coefficients
T do ?W of the thermodynamic forces in the source terms can be
PP ' evaluated analytically
The right-hand side vectors of Eq4.a) and(1b) are, respec- |
tively, the electron and ion forces, which will be referred as ~ ~ Ceo( Ye1feo) =Ziveo(v) verfeo:
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Cleo(')’ezfeo) =Ziveo(V) Yerfeo numerically is the distribution functiog,,, or g;, . Note that

in the banana regime the first term, computed analytically,
gives directly the value of the transport coefficienteat 1,
when all the particles are trapped; the second term gives the
reduction of transport due to the presence of passing par-
—c fy= 9ev B £ 7 ticles. In Appendix A we show that Eg&ll) and(12) satisfy

eo( Yesfeo) €0 (7) .
Te the Onsager relations of symmetry as expected.

v
- VeO(U)h(v_) Yeifeo,
Te

Cleo( Yeafeo) =Ziveo(v) Yeafeo,

(v, B. Banana regime: bounce-averaged equations

v
—C A viofn) = — v h(—) o,
i(Yizfeo) == wio(v) v @ 1° When the collision frequency,; is much smaller than

the bounce frequency,, the distribution functiong,, can

with
be expanded as follows:
( )_ Vei(v) _ 3\/;1)-?—6 ( )_ 3\/;1)?1 0 Ve| 2
Veolt)= 7T 4ZiTeU3’ Vit Z\QTin Gen=Jent gen+o Vb) )
h(x)= (10— 4x?)erf(x) — 10x erf' (x), and analogously for the ion distribution functions. A some-

what standard derivatidi? shows that the functiong’,, are
independent of the poloidal anglg, and that they are zero
ne‘inA 1 n; z4e InA in the trapped particle region of velocity space. In the pass-
\/__12?372' P \/—wr (8 ing particle region, the functiong?®,, satisfy the following
bounce-averaged equations:

and, according to definitions given in Ref. 3

7'e
Introducing the set of functiong,,, in such a way that ~ B

G,=2.9,nAsn, EQs.(5) and(6) can be linearly decoupled f dgpm CLo(ggn):Senv n=1,2,3,4, (133
- U

vb- Vgen— Clo(Gen) = — Cho( Yenfeo), N=1,2,3,4.

9
A | ) f d0p| y cl(@®)=s,, n=12, (13b)
vib-Vgi1—Cji(gi1) = — Bisfio, (103 _
. | | with
vb-Vgi2—C;i(gi2) = — Cji (7i2fi0)- (10b) Sen=270(BCL(v,B)) ey, N=1,2,3,4, (130
The kinetic definitions of the thermodynamic fluxes, E@s. B2
and (4), written in terms of the functiong,,, allow to Sil—27'raq< >f0 S,=270(BC%(v,B))fio
readily identify the transport coefficients, introduced in Eq. T '
(1) (130
wheres=v,/|v,| and where we have introduced the set of
E‘ﬁm=< f dVyenClol 7enfe0)> functionsC?,(v,B), defined as follows:
g CLa(0,B)=CL(Yonf 50) (v)f o).
em
_<deﬁC|eo(7enfeo)>, n.m=1234, The analytical expressions of these functions can easily
¢ be obtained from Egs.(7). Note that (BCL(v,B))
(12) =(BC%(v,B)), so that the functiong?, andg?, solve the
same equation in the banana regime; in particular it follows
<J dVglnﬁ|1>, n=1.2, that £4,= £,4: This is a consequence of our choice of ther-

modynamic forces and fluxes. We see thatatl, when all
Oi1 the particles are trapped, the distribution functicgﬂg are
- J dv—Cii(7ifio) (12) zero everywhere, and the first terms in the expressions for
the transport coefficients, Eq6ll) and (12), give directly
_ fdv Cl (yrfio) ) — f dv%c!( o) the entire coefficient. The code CQL3D has been modified to
YizviilYizlio o JitYizlio solve Eqgs.(13) in general axisymmetric equilibria and with

the full collision operator.
In this way we have obtained a simple set of expressions to P

compute all the neoclassical transport coefficients, once we
have solved the drift-kinetic equations, E¢®) and(10), to
obtain the distribution functiong,, and g;,. We see that
every expression is composed of the sum of two terms: The For the Lorentz gas moded;> 1, the set of Eq9133 is

first one is an integral that can be computed analytically andolved analytically** In fact, as collisions between elec-
that, for some coefficients, is identically zero; the second onérons can be neglected, the collision operator can be approxi-
has an integrand in which the only term to be computedmated by the pitch-angle scattering operator:

C. Lorentz model
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| . 19 5 0 R4 ' '
CeOZVei(U)L:Vei(U)Ea_g(l_g )a—§ and §= 1t - ®
The solutions of Eq(13a in this approximation can be writ- 0.81 -L, ® ” 1
ten in the following form: o6k L L =L
: E 127 21
v ’ e B B
ggn: _0'—.<Bcgn(vyB)>feO 0.4r & a 0o & ® ]
2vei(v) ® 8 o g
L 2 - L L ] i
Ae d\’ 02 o L 24 L S
N ((1—A’B)132>H()\°_)\)’ (149 oo e 30 o o o o o8
8. L A
) - ®
wherex = (1— £2)/B, A= 1/B . andH(X) is the Heaviside —02} ®e.g 14,": e ®
function. Introducing Eq(14) in the expressions for the co- e 0o o0
efficients Eqs(11), all the electron transport coefficients can =047 & Lﬁ )
be written as integrals in the absolute value of velooity 06l [
-0. °
A (= v = pidv L 3
e _ " 4 Sem 5y + J Y -0.8 .
l:mn 3 Jo v dU< L2 Cen>feO m 0 Vei(v)<Bcem> ¢ e L = L22
-1 ®-9
X(BCI)feo, N,mM=1,234. ‘ , . ,
The integrals ofv can easily be computed analytically, and 0.2 0.4 1/20'6 08 !

the results have been compared with Ref. 3, Efsl2)),

(5.124~(5.130, f_m_dmg a .complete agreement. As the Lor- FIG. 1. Transport coefficients$,, and £5, for an almost cylindrical equi-
entz model coefficients will be used not only as a benchmarkprium, computed by CQL3D in the approximation of the Lorentz model
for the results of CQL3D, but also to analyze the results of(circles, and compared with the analytical results, ELf).

the code with the full collision operator and in different axi-

symmetric configurations, we report all the electron transport

coefficients, which can be written in the following simple ) Uty 2m, T, (18)

. - = = y 1
form: Pop(p Qs [9sIBpo(p)

¢ =—0.5L4B3(B2)]fY, (158 like in Ref. 3, Eq.(5.122, where the poloidal magnetic field

Bpo(p) is defined byBp,=(dy/dp)Bo(1)/1(¢), andBo(4)

e _ 2/p—2 d
21~ 0.75Lo[ Bo(B~ )1+, is an arbitrarily chosen function introduced to normalize the

e, =—1r,B%B 2)]f¢ (15D magnetic field on a given flux surface. Note that the flux
22 8 ~dLPo ’ . . .
surface averaged integrdlg, |13, andl sz which appear in
L5=L5,=— Ly, L£5,=0, the results of Ref. 3 can be reduced to only the two trapped
3 (159  fractions, Eq.(17), with the following relations:
= - EE”[B?(BZHH ’ l11=3B&B I, Tia=3f1, 135=3[By%B?)]f;.
(19
f1= L5,= —0.5L4[ B§(B?) ~']fy, We see, therefore, that all the coefficients in the Lorentz

(150 model depend essentially cliﬁ andf,. We shall show in the

e _ 2/p2\—1
42~ 0.78Ly[Bo(B7) 1. next Sections that in the general case this property remains

with true, namely that all the equilibrium effects on the neoclas-

sical transport coefficients are functions of only these two
r Nepgp | dip|® Coe] r Nedae _, trapped fractions.
i b (Pne, L,= m.T, oo
(16)
_ o Ill. NUMERICAL RESULTS
and where we have introduced two definitions for the trapped
fraction A. Benchmarks

As the Lorentz model gives an analytical solution, it can

d_q_3/p-2y-1 _1_3/p2
fi=1=3(B) "4, fi=1-¥B9%, be used as a first benchmark for the numerical results. In Fig.

Ao NdM A7 1 we show the transport coefficienf§,, and £5, relative to
I\= o (I-N'B)7S" the sourcesS,; andS,,, Egs.(13), computed by CQL3D in

the approximation of the Lorentz model: very good agree-
The second onef,, is the usual definition for the trapped ment is obtained for alk. The coefficients in the Figure,
particle fractior Note that the integralZ, can easily be indicated byL¢,,, are plotted normalized by the relative fac-
evaluated using the formulas in Ref. 15. The poloidal gyrotors £y or £y, given in Eq.(16). This normalization for the
radiusp,,,, of specieso is given by electron transport coefficients is also kept in Figs. 2 and 4,
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FIG. 2. Onsager symmetry is correctly respected by the numerical results.

(&) The transport coefficienti; (symbols, plotted vsf,, is well aligned 15 3 The jon heat conductivity, transport coefficietlt,, computed by
with the formula(14a of Ref. 1 for the bootstrap current coefficief§, | 3p with an almost cylindrical equilibriurtsolid circles, divided by the

(solid line). The different symbols refer to different equilibria in all the flux surface averang<B’2) plotted vs the trapped particle fractitbﬁand
figures. Note that the results given by the different equilibria are perfectlycOmpared with formuolas of ;?ef 3, CH 8dashed—dotted lineRef. 4, T 88

overlapped, as they are plotted f5s (b) Transport coefficient?, (sym- (dashed ling and Ref. 9modified, HHR 73 (solid line).
bolg) and LS, (solid lineg computed with four different equilibria, plotted vs
€'2. Note that when the complete coefficients are plotted vs the inverse

aspect ratio, a strong dependence on equilibria appears at small aspect ratﬂ'gined solving Eqs(13a) and (130, n=1, is plotted with
symbols, the coefficient$,, obtained solving Eq$133 and

and analogously in Fig. 3 for the ion transport coefficients.(lSC)’ n=2, is plotted with solid lines: we find a very good

1Cl ithi 0,
The complete definition of a set of dimensionless coe]‘ficienté‘greement between the two coeﬁ_‘|C|ents, within 1% éor ,
will be given in the next section. =0.1. We see also that the behavior of the transport coeffi-

When the full collision operator is used, the symmetry Ofment strongly depends on the equilibrium at small aspect

the transport matrix gives a second benchmark of the nur-"?‘t'o' Previous formulas, which give the transport coeffi-

- - - 2
merical results: indeed, each off-diagonal coefficient can b lents with an expansion In powers of”, are Cofre“. only
computed in two different ways,, and .. Note that we or almost cylindrical equilibria and are of practical interest
nm mn-

have already computédhe neoclassical resistivity and the in general equilibria on_Iy fOE.<O'1: this must b? ta_ken Into
bootstrap current coefficient,,, n=1,2,4. In Fig. 2a) we account when comparing with our results. It indicates that

plot the results for the coefficientS;, computed solving the for each transport coefficient an appropriate geometrical pa-

kinetic equation with the sourc8,;, Eqgs.(133 and (130, rameter, likef fqr £§1 and.gsin I_:|g. Aa), needs to b.e used
n=1: they are perfectly aligned with the solid line given by instead ofe, as it will be shown in the next subsection.
Eqg. (149 of Ref. 2, which fits the code results for the boot-
strap current coefficient’3;, hence computed with the
sourceSq3, EQs.(138 and(13¢, n=3. The exact relations
between the bootstrap current coefficients defined in Ref. 2 As we have said in Sec. |, the most recent investigations
and the transport coefficients defined in this paper will beon perpendicular neoclassical transport were dedicated only
presented in the next section. In FigbRwe plot the two to the ion thermal conduc_tivit§/.6 In Fig. 3 we compare our
coefficients£$, and £5,, computed considering four differ- results for the coefficient,, obtained with an almost cy-
ent equilibria, as shown in Fig. 1 of Ref. 2, and whose mairlindrical equilibrium, with the results of Refs. 5, 6, and 11.
specifications and related symbols, full or open, used in alAs mentioned at the end of the previous paragraph, a correct
the figures, are given in Table I. The coefficieff,, ob-  geometrical parameter must be chosen to plot a given trans-

port coefficient. As it can be inferred from the Lorentz model

results for the electron coefficiedtS,, Eq. (15b), and as it
TABLE I. Equilibria specifications and related symbols used in the figures.yi|| be presented later, the ion heat conductivity is a function
of the trapped fractiof?, Eq.(17). We find good agreement

B. Comparison with previous results and behavior at
small aspect ratio

Symbol Rimag [M] Rgeo [M] a[m] k S .
with the most recent formulas of Refs. 5 and 6. These results
o 2.13 2.13 1.925 1.0 0 enable to finally resolve the discrepancy between the formu-
o 8.44 8.00 2.750 18 032 |as given in Refs. 5 and 6, obtained with approximated col-
> 1.67 1.22 0.875 3.0 0.56 o )
< 0.92 0.88 0.252 25  _065 lision operators. It turns out that the results with the full

collision operator, CQL3D, are in between the previous re-
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FIG. 4. The transport coefficiert3,, main contribution to the electron heat 7 (c) P (d)
conductivity, computed by CQL3D with four different equilibriea) The 0 Q==
complete coefficient is plotted w2, a strong dependence on the different 0 025 05 075 1 0 025 05 075 1
equilibria appears at small aspect ratfib) the coefficient is divided by an fd fd
appropriate flux surface avera%(B’z), and plotted vs the correct geo- t t

metrical parametelf,f', which allows to perfectly align all the points of the

different equilibria. FIG. 5. Computed values of the dimensionless transport coefficiéfjts

(symbols, compared with the fitting formulas, Eq&3) and (24) (solid

lines). (a) Coefficientsk’, plotted vsfd (solid symbol3, and k5, plotted vs
sults. Note that the plotted formula of Ref. 11 has been modit: (0Pen symbols (b) Coefficientsii, and i3, plotted vsf? (solid sym-
fied, keeping in the expression for the transport coefficienf oIS, andJc;, plotted vsf (open isymbous © ioemc.'emlczzploued vsty

o - solid symbol$. (d) Coefficientk’, plotted vsf{ (solid symbols.
the flux surface average of the magnetic field, which were
correctly computed in the reference to obtain the limit at
e=1, but then not taken into account in the final formulas. transport coefficients. Hence the study of the effects of
When different axisymmetric equilibria are consideredplasma shape on the neoclassical transport can be simply

in the numerical calculations, the transport coefficientsobtained considering the dependence of the trapped fraction
present particular features of the influence of geometry adn plasma elongation and triangularity at a given aspect ra-
small aspect ratio, as already highlighted in Fi)2In Fig.  tio. Both the two given expressions for the trapped fraction,
4 we also show the electron coefficietf,, computed with  f, and f¢, Eq. (17), turn out to be almost independent of
the four different equilibria of Table I. In Fig.(d), £5,is  elongation, and increasing when decreasing triangularity. In
plotted versuss% we see differences up to 30% already atthis sense, in the neoclassical transport, at a given value of
€=0.15. In Fig. 4b) we show the same coefficied}§, di-  the aspect ratio, a highly triangular plasma shape is favorable
vided by the flux surface averageBﬁ(B”)) and plotted for confinement, as shown in Figgh? and 4a) (symbol>>),
versus the trapped particle fractib?\, defined in Eq(17), as  but not favorable for driving bootstrap current.
suggested by the results of the Lorentz model: the points are
well-aligned at allf?, i.e., at alle. The same behavior is |v. TRANSPORT COEFEICIENTS FORMULAS
obtained for all the other transport coefficients: the coeffi- . ) .
cients must be normalized by a suitable flux surface averag(t%érf;nniyrt'eca}:]:'ets to the numerical results for the
and a correct geometrical parameter must be used to encap- 9
sulate the effects of the different equilibria. Note that the  Considering the results of the previous section, we can
definition of a new trapped particle fractioff,, Eq.(17), is  introduce a set of dimensionless electron and ion transport
effectively necessary, as suggested by the Lorentz model, woefficientskCy,,
correctly describe the geometrical behavior of certain coeffi-

: e =Ly[B3(B )]k, (f¢ =12 2

cients, in particular all the particle and heat conductivities, Lom=La[Bo(B”)1Knn(f1),  nm=12, (209
for which the usual ond;, turns out to be inadequate. From LE= L KE(f), n=1,2,4, (20b)
Fig. 4 it is also evident that, when plotted versus the correct . 2o 11re

parameter, the transport coefficients turn out to be very Lna=Ld Ba(BY) "1Kn(f), n=1.2, (209
simple functions, almost proportional to the appropriate e _ 2/ n2\1 e

trapped fraction. This explains the relatively simple formulas 3= Lol Bo (B ks o), (209
of Ref. 2 for the electrical conductivity and the bootstrap £i11: [;L[B(;QBZ)]/Cill(ft), (200
current coefficients, and will be completely presented in the i O

next section and shown in Fig. 5, for all the perpendicular ~ £12= £pK1a(f0), (20f)
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L= LLIBA(B~2)1Kbh,(f%) (20g  bootstrap current coefficient in the banana regime, Eq.
t/s . . .
. ) (173 in Ref. 2, to include the same effect, using the large
and analogously all their symmetrics, whelg, L,, andL,  45pect ratio limit of Ref. 17, and noting thatet 1 not only

are defmeid by Eq(16); the ion normalization factorsly,  the pure plasma coefficient, but also the impurity contribu-
b, andL,, are defined as follows: tion must be equal to zero. The analytical fits to the results of
_ nipi2p dys\ 2 _ TR CQL3D for all the transport coefficients not already com-
Ly= - @) . Ly=1(p)n, L= — B3. puted in Ref. 2, valid in the banana regime, for arbitrary
I [}

1) trapped fraction andZ, and the modified formula for the

_ _ o _ bootstrap current coefficient, read as follows:
The dimensionless coefficients are functions of only one

suitable geometrical parameter, i.e., a trapped fraction, which (f)=—0.5F (), (2339
completely encapsulates the effects of the various equilibria:  jce (d) =0 757 (%), (23b
in this way the code results for the coefficieii§,, can be

fitted in terms of the appropriate trapped fractibnor f¢, as () =Kg,=— 0.5 15(fy), (239
they perfectly overlap, regardless the equilibrium considered 13 V3

in the calculation, even highly noncircular and at small as-  $(f%) = —(§+ ﬁ) Fou(f9), (230
pect ratio. Note that only in this way relatively simple for-

mulas valid in general axisymmetric equilibria and at all as- ¢ (f)=0.757,4f,), (239
pect ratios can be given. We have already computed the _ _

neoclassical conductivity and the bootstrap current coeffi-  Kha(ff)=—F5(f{), (23f)
cients, in Ref. 2, solving the same kinetic equation of Eq. 0.9 19

(138, n=3, and computing the transport coefficients with Fll(x)t(1+ i )x— NG

the same integrals given by E(.1), n=3, and Eq.(12), n Z+05 Z+05

=2, m=1, which were first obtained using an adjoint 1.6 0.6

formalismt® adapted to calculate only the bootstrap current: *>0 5X3— 770 5X4, (249

the general kinetic results of Sec. Il show, however, that the

adjoint formulation is not necessary. The relations between ) 0.6 09 _,
the transport coefficienf3; and the neoclassical conductiv- Fi(X)=| 1+ Z+0.5 X= Z+05
ity oneo, EQ.(133 in Ref. 2, and between the dimensionless
coefficientsk§,,, m=1,2,4, and the bootstrap current coef- + 03 .3 + 0.05 NG (24h)
' bS . H
ficients £3,, EQgs.(14) and(15) in Ref. 2, read Z+0.5 Z+0.5
Oneo— O 0.11 0.08 0.03

o= B, K=~ Lo (22 FaAX)={ 1~ z+0.5) * 7708 T Zr05%"
The coefficientC}, is related to the coefficient, Eqs.(179 _ (249
and (17b) in Ref. 2, by Eq.(25). [Note: —0.315 should be Foa(X)=(1—-0.55(1+1.54x)X
replaced py+(_).315 in Eq_.(l?_b).] We have run the codg +(0.75¢2— 0.73+ 0.5X4)(1+2.92)),
CQL3D with different equilibria and for the electron coeffi- (240)
cients we have also varied the ion charge, to obtain the de-
pendence on the effective chargeOur idea is that, at least Q(f)=— K= — 0.62+1.5¢] 1-f
for the electron transport coefficients, an effective charge t 12 0.53+ | 1-0.22f,—0.19%7"
approximation for multispecies cases should still be valid: (25

collisions between electrons and main ions, or between ele‘\"/vherem =nIZ|2/niZi2 is the usual impurity strength param-

trons and impurity ions are almost of the same kind, involv-eter’ and index refers to the ion impurity species. The fac-

ing basically the pitch-angle scattering. In any case, the coMy,izations used in Eq$23) and (24) are such that the Lor-
parison with the results of multispecies cdtissould enable entz limit (Z—=), the low (f,—0) and the large aspect

one to determine the correct form &f instead of the usual |4io (f,—1) are easily recovered. Moreover the functions

definition of Zs, to be used in our formulas, as already F,; have values withifi0,1]. Note thatk’$, andK¢,, as well

mentioned in Ref. 2. For the ions, the presence of one heavé(slc‘jz andkg, have the same functional dependence on their

impurity species leads to collisions between main ions andaspective trapped fraction. These relations can be consid-
impurity ions which involve basically the pitch-angle scatter-greq a5 the extension to a general axisymmetric equilibrium
ing, and which are completely different from like—particle o; 4 aspect ratios of Eq$6.28—(6.30 and Eq.(6.47) in

collisions. In this case, as shown in Ref. 16, the thermahef_ 3. We have also computed the coeﬁiciéiﬂ which is

conductivity computed aZ.; times the pure ion conductiv- usually not considered, following the weak-coupling ap-

ity is underestimated. Using the results of Ref. 16, WhiChﬁroximation, which neglects the foro&;. For complete-

uses the large aspect ratio limit of Ref. 17, we have generafiess e give also the fit to the code results for the transport
ized our formula for the transport coefficied},, to include i i
2 coefficientC};

the effect of a single heavy impurity species in the Pfirsch— i 5 .
Schiiter regime. We have also adapted the formula for the ~ K11(fo)=(0.11+1.7f, — 1.25(7+ 0.44f7) " — 1.
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Note that Eq(2) allows to reduce the number of independent 1 - -
thermodynamic forces from 6 to 4, hence with only 4 conju- | (b)
: : : ot .01 o9tf=08 1
gated thermodynamic fluxes. Taking the first 3 electron Sy =
forces and the second ion force, whose conjugated fluxes, g f=01 .’{' ]l osl O
have more direct physical meaning and more direct applica- // i AN Y
tion in the fluid transport equations, the relations which con- 0.7} /,} / 1 07¢ \)
nect fluxes with forces read as follows: . v
5 ) 0.6} ////’ ! I 1 0.6 "f =0.4 \ \‘
1 T Ll e e \
2 nm 52T 05+f =04 l i {1 05} N I
m=1 ]—"Z T () 2 t { \\\\ y
| I 1 ALY
LT e Lo A, n=12,3 (263 ™ /1 + % "‘,
FZTe ”4I(¢)ni 12 e 0.3t ! 1 03¢ \\
1.7 wt
2 02} " 1 0.2}f =0.1 \\\* |
B re - L
I2 fl(l,b)rhm L 4m em 01 _ft_0'8 |
cy s —2—T _2512521 Yo (26b) 0 @ :
25 F 72T, [1(y)n]? ~* Aiz, 107° v 10° 10 v 10
e* e*
where . -
] FIG. 6. Dependence on collisionality for the transport coefficients, (a)
T L 1£e andz$;, (b), for different values of the trapped fractidp, as given by Ref.
F=1+ 22T (N2 1 (solid lines, by Ref. 12, with the value at.« =0, banana limit, corrected
T [I () ] with the results of Ref. 1dashed lines and still by Ref. 12, with also the

andZ, is the main ion charge number. The condition for theCiSional parameter rescaled by H@9) (dashed-dotted lings
: .

validity of the weak-coupling approximation is given by Eq.
(5.86 in Ref. 3, and is S'an|y]:_1<1 Introducing the  symption on the ratio between the collision frequency and
dimensionless coefficientSy,,, this relation reads, consis- the hounce frequency. In order to strictly compare only the

tently with the estimate given in Ref. 3, Table IV dependence on collisionality, in Fig. 6 we have plotted for-
2v2 [ mg\ M2/ T;\ 32 _ mulas of Ref. 2(solid lineg and those of Ref. 3, Sec. VIF
Z—I(E T_e) T <1 27 (dashed lines in which we have replaced the banana limit

_ with the correct results of the code CQL3D. The neoclassical
The absolute value of the terkif £y, turns out to be smaller  resistivity is shown in Fig. @) and the bootstrap current
then 0.25, which confirms the validity of the weak coupling coefficient £$, in Fig. &b), for three values of the trapped
approximation in the banana regime. In this way &) are  fraction. At low aspect ratio there is a very good agreement,
reduced to: which falls down at larger values of the trapped fraction.
3 T I This comes from the main approximation adopted to com-
= L8 Aem— L e = 12 A, n=123, pute the banana-plateau regime, in Ref. 18, which neglects
ZiT L(¢)n; the energy scattering in the like-particle collision operator
(283 and which underestimates the neoclassical transport at low
[ﬂ aspect ratid. However, for both the neoclassical resistivity
'2_|( E Lom and the bootstrap current coefficiedf,, and also for the
YIn; =1 coefficient£s, not shown here, the Ref. 3 formulas go down
T, 2/: to zero at smaller vaI_ues ofs, with respect to the rigoroug
2_|_ [I(¢)n]2£ (28b) \r/(\a/?]ults of Ref. .2, with approxmately. the same behavior.
en the collisional parameter,, , defined in Ref. 2, Eq.
In Fig. 5 we compare the code results for the dimensionlesél8), is rescaled in terms of the trapped fraction with the
transport coefficient&? . (symbolg with the algebraic for- simple transformation
mulas, Eqs(23) and(24), which fit the datafsolid lines.

m=

Lo~

_ Pox
Vo'f*_l+ 7.[.‘?’ (29)

B. Combined formulas for all collisionality regimes Ref. 3 formulas allow an agreement within 20% for all the

In order to compute the neoclassical transport coeffibootstrap current coefficients and the neoclassical resistivity
cients at arbitrary collisionality regime, the nonbounce-(dashed—dotted lingscomparing with Ref. 2. Hence, fol-
averaged kinetic equations, Eg&) and (10), must be lowing the idea of Ref. 5, in which a formula valid for all
solved. This, as already mentioned, has been done in Ref. 2pllisionality regimes for the ion heat conductivity is ob-
to compute the neoclassical resitivity and all the bootstragained connecting a new banana limit, valid also at small
current coefficients, using the code CQLP, which includesaspect ratio, with the collisional dependence of Ref. 3, we
the advection parallel to the magnetic field, without any aspropose to combine formulas of Ref. 3, Sec. VIF, adapted to
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small aSpeCt ratiO, with the results of this paper in the limit at(gOh) for the ion thermal Conductiviwcizz includes the ef-

vy« =0. The electron transport coefficient¥,,, m,n=1,2

fects of a single heavy impurity species in the Pfirsch—

can be computed at arbitrary collisionality regimes as fol-Schiiter regime, according to Ref. 16, using the modified ion

lows:
KSi(F e ) =H51, KA ] vee) = HE— 3HSL,
SATe Vew) = H5y— BHT+ FHS,
Had (fve, =0)

1+ amn(z)Vll2 +bmn(Z2) Vet

efx

(303

Hﬁ”ln(fd Wex ) =

3 6
(@ ver (LD
1+cmn(2) vers fg3(1+ f?G)

PS»

(30b)

where the banana limit coefficiert9(f¢, v, =0) can be
readily evaluated using Eq&3) and (24), with

HIY = KR, HEY = K(f)) + 3K ( D),
H38 = KA 1) + 5K F) = K (FD).
The coefficientsCy,, are given by
’Cil( fi ves)= Hil’ ?12( fi ves)= Hﬁz_ gHilv (300
Hap (f1,vex =0)

1+a10(Z) veh +b10(Z) very

efx

(300

Hin(ft Wex ) =

i D)re f(LHO8)
14C1n(Z) ver, F2(1+0.8F3)  PS

1
X—
T+ 2, 12 e
where analogously
HED=KC5(f),  HED=Kef0+3K5(f), (30D
and with
Fps=1—% Fpd=(B72(B%—1. (309
(B)(B™%) °
The ion thermal conductivityCi22 is given by
i(fd - ): I22(f?)
2250 T L Aty + Doptics
opis FE(1+15)
- HoFps, (30D
1+comirs fy (1+17)
with'® i, = vise (1+1.540,) and Hp=1+1.33 (1

+0.600))/(1+1.7%,). The coefficientsa,,(Z), bmn(Z),

Cmn(Z2), andd,,(Z) are given in Appendix B, obtained by
interpolation of the data given in Ref. 3, Table Il for the

electron coefficients and below E@.133 for the ion coef-

collisionality parametej;s, and the factoHp, which take
into account the enhancement of main ion thermal transport
due to the presence of the impurity speciés.

V. CONCLUSION

We have presented an approach for the neoclassical
transport theory which allows to obtain simple equations
suited for implementation in numerical codes in order to
compute all the neoclassical transport coefficients. The code
CQL3D, solving the bounce-averaged linearized drift-kinetic
Fokker—Planck equation with the full collision operator, has
been modified to calculate all these coefficients at all aspect
ratios of various axisymmetric equilibria in the banana re-
gime. We have shown that the limits at large and unit aspect
ratio are correctly respected by the numerical results, as also
the Onsager symmetry of the nondiagonal transport coeffi-
cients. Investigating the dependence of the coefficients on
geometry parameters, we have shown that appropriate defi-
nitions of trapped fractions are required in order to encapsu-
late all the geometry effects in a single variable. In this way,
a set of simple formulas can be obtained from the numerical
results and allow the evaluation of any transport coefficient
for every axisymmetric equilibrium and at all aspect ratios.
Our formula for the ion thermal conductivity is in good
agreement with the most recent evaluations of this
coefficient>® which, however, do not use the full collision
operator, with errors at finite aspect ratio of about 10% by
excess and by defect, respectively. For all the other perpen-
dicular transport coefficients, in particular the electron ther-
mal conductivity, our formulas are the only existing to date
and to our knowledge, computed for general axisymmetric
equilibria taking into account finite aspect ratio effects. The
transport coefficients formulas, which fit the numerical re-
sults in the banana regime, are given by E@S)—(24) of
Sec. IV A. Extension of this work is to compute the transport
coefficients at all collisionality regimes: note that this has
already been done for the neoclassical conductivity and the
bootstrap current coefficients in Ref. 2. These results, com-
pared with the ones of Refs. 3 and 5, have motivated us to
propose combined formulas for all the other transport coef-
ficients, valid for arbitrary collisionality regime, needed to
correctly evaluate these coefficients over the whole plasma
minor radius. The thermodynamic fluxes

dys Qe dy

Bel—reai 2=T_dp
(11B)  (iisB) Q; dy
Be3: T - T ' izz? d_’
e e i up

ficient. The dependence aof the plateau-collisional terms wherel  is the perpendicular electron particle flg, is the
of the formulas of Ref. 3, first computed in Ref. 19, has beerelectron perpendicular heat fluk, and j;s are the parallel
rescaled orf, or f. Finite aspect ratio effects in these terms electric current and the Spitzer current, a@ is the ion
have been taken into account, like in Ref. 5, introducing theperpendicular heat flux, are given by E¢28), in the weak
complete expression of the Pfirsch—Stbhgeometrical fac-  coupling approximation, whose validity is confirmed by Eq.
tor, by means ofFpg and F(p“s), Eqg. (30g. Note that Eq. (27). Equations(28) can be reordered, and the thermody-

Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 7, No. 4, April 2000 Neoclassical transport coefficients for general . . . 1233

namic flu.xes can be expressed dlrgctly in terms of the glec- |vH|6~Vg*n— Cly(9a) = — Cly(Yenf e0),
tron and ion temperature and density perpendicular gradients e

and the parallel electric field |U”|6'Vge_n_ Cleo(ggn)zo (A2)
dlnn ainT .
Ben= Lo+ (L& L) 2 [as Co(Yenfeo) =Ceo( Yenfeo) @nd Ceo(Yenfeo) =0,
I I n=1234
1-Rye glnn; 1Ry, we can perform the following derivation:
e e e
* Roe ™ dy Rpe (£my ¥ @Lng) e2) - Gem |
InT <E B> Ln' = dVECeO( Yenfeo)
dinTy . (E B
N R _Udvgemd (ot )>
- e 0 0
Q; dy o dInng R 0. 0InTe feo ~ 7577
Bi2=-|—_i & /341W +(Lart L2) o

Gom. o o 4
==\ | dvz—[vb-Vge,~ Ceo(9 )]>
1_Rpe dln n; e <E”B> <f fe0 I en e0\Yen

e
+‘C41 Rpe (91// 43 <B>2

1 . 3 _ _
, =—<jdvf—[—ggmhh|b'V9en_9emC|e0(gen)]>
1-Rpe @ | dInT; ”

I:zpe Zi £44 &lﬁ ’
whereR,=p./p andZ; is the main ion charge number. The
perpendicular transport coefficient%,,, for general axi- 1
symmetric equilibria and arbitrary collisionality regime, are =< f dvf—gemCLO(gen)>,
given by Egs.(30) of Sec. IVB in terms of the trapped e0
fractionsf; or f{‘, Eq. (17), the collisionality parameter, which is a symmetric expression, using the self-adjointness
and the effective charge numh2rThe neoclassical conduc- of the collision operator(Note that we have used in this
tivity and the bootstrap current coefficientd3, anda, are  derivation the fact that the operater b- V is the adjoint of
connected with formulas of Ref. 2 by Eq&2) and(25). the operatowb-V.) Hence we can conclude that

i
+| Lyt

1
= —< f dvf—eo[—g;mC'eow;n)—g;mC'eo<ggn>]>

1
ﬁ?n(ﬁ) = J dv— gemcleo(gen)
feo
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APPENDIX A: ONSAGER SYMMETRY OF THE |12: - I211 (A4)

TRANSPORT COEFFICIENTS consistently with the result in Ref. 3, E(.99.

The expressions for the transport coefficients given by
Eq. (11) for the electrons and by E@12) for the ions satisfy
the Onsager relations of symmetry, as expettéde begin
with the electron case. In Eq(1l), the first term,

APPENDIX B: COEFFICIENTS FOR THE COMBINED
FORMULAS OF SEC. IVB

LED=([dVyenClo( Venfeo)), is symmetric directly from The coefficientsan(Z), bm(Z), Cmn(Z), anddy,,(Z)
the self-adjointness of the collision operator. Hence for the electron transport coefficients are defined as follows:
e(l) - I 1+3Z
Loy = AdVyenCeo( Yenfeo) a;(Z2)= 077+122°
(B1a)
_ [ . pe(l) 0.72+0.4Z
- < f dv‘yenCeO( yemfe0)> _L‘nm . (Al) alZ(Z) = W, a22(Z) = 046,
For the second term;&2)=( [ dvgem/feoCho( Yenfeo)), We 14117 147

shall rewrite it in a symmetric form. Introducing the follow-
ing notation®> for a generic functionf(v), f*=f(o
=+1)+f(oc=-1)] is its even part inc=v,/|v,| and
f-=1f(c=+1)—f(oc=—1)] is the odd part, so that

b11(2)2—1_37z ; blz(Z)Z—z_ggz,
(B1b)

S T XA
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0.1+ 0.3 0.27+0.47
c1y(2)= Tew Ci1Z)= 1137

0.22+0.55 (B1o)
ColZ)= —1i77

0.2%

du(2)= 7387

0.22+ 0.3 0.25+005 (Bl
W=z AT 08z

For the ion thermal conductivity, the coefficients are
a,=1.03, b,=0.31, ¢,=0.22, d,=0.175. (B2)
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