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Expressions for the neoclassical resistivity and the bootstrap current coefficients in terms of aspect
ratio and collisionality are widely used in simulating toroidal axisymmetric equilibria and transport
evolution. The formulas used are in most cases based on works done 15-20 years ago, where the
results have been obtained for large aspect ratio, small or very large collisionality, or with a reduced
collision operator. The best expressions to date and to our knowledge are due to Hifshran
Hirshman, Phys. Fluid81, 3150 (1988] for arbitrary aspect ratio in the banana regime and
Hinton—Hazeltind F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phyt8, 239 (1976] for large

aspect ratio and arbitrary collisionality regime. A code solving the Fokker—Planck equation with the
full collision operator and including the variation along the magnetic field line, coupled with the
adjoint function formalism, has been used to calculate these coefficients in arbitrary equilibrium and
collisionality regimes. The coefficients have been obtained for a wide variety of plasma and
equilibrium parameters and a comprehensive set of formulas, which have been fitted to the code
results within 5%, is proposed for evaluating the neoclassical conductivity and the bootstrap current
coefficients. This extends previous works and also highlights inaccuracies in the previous formulas
in this wide plasma parameter space. 1®99 American Institute of Physics.
[S1070-664X%99)03907-5

I. INTRODUCTION cosity moments from low and large collisionality regimes. In
this way one obtains the resistivity and bootstrap current for

The transport parallel to the magnetic field lines is be_arb'trar shape and collisionalifin addition to multispecies
lieved to be well described by neoclassical theory. The neo \rary P ISl 1tn N uiispeci

classical resistivity and bootstrap current are widely used t& ffects. However, as a set of equations have to be solved in a

analyze experimental data and to design new experimentg.pec'fIC code, NCLASS, it is not of convenient use for rapid

The recent progress on advanced scenarios and steady—stgf%) erimental diagnostics or tokamak  design over a .W'de
nge of parameters. Also it does not use the full collision

. . X f
operation has emphasized the importance of the bootstraog . 0 : .
current in equilibrium calculation and its alignment with the perator which can lead to errors up to 20% as mentioned in

A . _Ref. 6 and first shown in Ref. 8. This is why we have ex-
equilibrium current. New modes, namely the neOCIaSSICarended the work published in Refs. 9, 10 in order to have a

tearing modes, destabilized by the modification of the loca omplete, accurate and analytical set of formulas for the neo
bootstrap current around a magnetic island, have been olgOMPIEtE, y

served(Ref. 3 and references thergiRelatively simple for- classical resistiyity gnd all the bootgtrap current coefficients.
mulas for the neoclassical resistivity and bootstrap current T_he m.odeI is briefly presented in Sec. Il and the resuits
exist which are valid for low inverse aspect ratie<1, o ¢ dVenmn Sec. Mil.

and arbitrary collisionality,, , or for arbitrary plasma equi-

Ilprlum and low coII|S|ongI|ty. In Ref. 4, Harrls hgs derived Il PHYSICS MODEL

simple formulas connecting these two limits using Refs. 1

and 2. This enabled one to study any configuratias, near The code CQLP solves the Fokker—Planck equation us-
the center one has typically<1 andve, ~1, at mid-radius  ing the linearized operator on a magnetic flux surface, in-
ve, <1 and at the plasma edge<1 andve, ~1, even in  cluding the advection parallel to the magnetic figld.does
reactor-like plasmas. A recent improvement has been t@ot make any assumption on the ratio of the collision fre-
solve a set of multispecies fluid equations using the three odduency to the bounce frequency. Moreover the code uses the
velocity moments of the Fokker—Planck equatidollowing  magnetic geometry as calculated by a toroidal equilibrium
the work of Hirshman, using interpolation formulas for vis- code and, therefore, uses the exact axisymmetric magnetic
configuration of the flux surface. One has to solve the linear-

3 Author to whom correspondence should be addressed. Electronic mail ad2€d Fokker—Planck equation for arbitragyand ve, [Ref. 2,
dress: Olivier.Sauter@epfl.ch Eqg. (5.2)—(24)]
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and Whereu%,: 2T?/m, andQ,=q,By/m, are the thermal Pi i
velocity and the cyclotron frequency of species | (i) e vy
=RB,, b=B/B, and(®) is the flux surface averaged elec- == ViTe< f Xi Vioh<v—_ri) EdV>, (12)

trostatic potential. Note that we do not take into account the
modifications due to potato orbits and, therefore, our result¥ith
should be slightly modified near the magnetic axis according ()
to Ref. 11. Following the work in Ref. 12 adapted to this Y11=
problem in Ref. 8 and also described in Ref. 9, one can solve

B ¥ 5
Qe o Y2eT™ V1 g E ’

e

the following adjoint equationfusing the same notations as B2 () ( V2 5)
in Ref. 9 and Eq(4.45 of Ref. 2 V4= 7’1(82)’ Yoi= Q, UTTI 2/
— -V xe— Ceol Xe) = et Bfeo, (3)  where h(x)=x"3[10erfx)—10x erf (x)—4x*erf(x)], veo
A | =3\ml(4Zi7e),  vie=3\m2/(27), and L3 e
—yb-Vxi—Cji(xi)=aivBfjo. @) ([ xeCha)s L3z ei~( x<Chi)- The code solves Eq3) for

Then the flux surface averaged parallel current is given by the electron adjoint function, using Maxwellian background
ions of chargeZ for the e-i collision contribution, and Eq.

(J1B)=0ned EiB) = () Pe( L31A1 T L3Ar+ L3Ay), (4) for the ions. Then the coefficients, Eq#)—(11) are com-
puted using the solutiong, and y; . Changing the flux sur-
with face considered or the plasma equilibrium, one can vary the
aspect ratio or the trapped fractibp, wheref, is defined as
1 dpe 1 Jp
SRR fi=1-f=1- (83 [ 2R 12
' ¢ 4 o (J1-AB)
1 T, i 10T

(6) We have used this exact definition, but an approximate and

Ap=— —, A= —,
Te 0y Ti 9o fairly accurate value can be obtained from simpler terms as

1-R described in Ref. 13. Also varying the temperature and den-
A=« peAiz, sity, one can change the collisionality regime from the ba-
Rpe nana regime to v, >1, where Ve
where we have use®; /ZTe=(1/Rye—1) With Rye=pe/p, =0.01Nep0ZeAR € Tey ey Finally, we have varied the ion

and the coefficients are obtained from the adjoint function£hargeZ, to obtain the dependence ag;;. The results ob-
Ye and x; tained with CQLP for the coefficients Eq&)—(11) in this

three-dimensional parameter space are given in the next Sec-
Oe/1 tion, as well as the formulas used to fit the results in terms of
Trneo™ T Ef vixedv ), (@) fi, Ver » andZys. The code CQL3ESf has also been modi-
fied to solve the bounce-averaged version of Egs-(11)
Xe - and compute in the collisionless limit the coefficients. As
f@ceo( V1feo)AV this reduces to solving a two-dimensiori@D) problem in
3 the velocity space, the results are more accurate and much
- 14 1 f o Edv ) faster to obtain and it gives a benchmark for CQLP in the
Xefiveo Y173 BV [ limit v, <0.01.

IPe
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that the trapped fractiofy, is a good parameter to encapsu-
late the geometrical effects on conductivity in the collision-
less limit. In Fig. Za), we show the neoclassical conductivity
obtained by CQL3D, using the bounce-averaged version of
Egs.(3) and(7), versus the square root of the inverse aspect
ratio e. As one can see clearly;,s, depends not only o=
but also on other equilibrium parameters. On the other hand,
when plotted versus$;, then all the points are well-aligned
and o, depends only orf;. The same is obtained for the
@ bootstrap current coefficients, within 1%, which shows that
f; does represent the effective trapped fraction for noncircu-
lar and finitee equilibria.

Different options have been used to include finite colli-
sionality effects in the formulas?%*®but mostly the coef-
ficients in the formulas have been modified. Ads a very
good parameter in the collisionless limit, it seems better to
change onlyf; as a function ofy,, if possible. In this way
one can first find the polynomial dependenceogf,, L£31,

FIG. 1. Examples of different equilibria used in this paper. L3, and a on f; in the collisionless limit using CQL3D,
which is faster and more accurate. And then determine the
effective trapped fractiorf;(ve,) for finite collisionality,

. RESULTS while keeping the coefficient of the polynomials independent

We have solved Eg€3) and(4) over a wide variety of of ve, . This procedure is also easier to find an analytic
equilibria, trapped fractiof (i.e., on different flux surfaces ~ formula valid for arbitraryf; and ve, , as one does essen-
and collisionalities in order to determine accurately the fittectially two one-dimensiona(1D) fits, instead of one 2D fit.
formulas for the neoclassical resistivity,.,, and the boot- Finally it is interesting as one naturally obtains the effect of
strap current coefficienfs;, L35, £34 ande, relative to the  collisionality on the fraction of trapped particles. This proce-
pressure, the electron, and the ion temperature gradientdure was shown to be possible fof,., and L3, in Ref. 10.
Egs. (7)—(11). Some of the different equilibria considered Since then we have made more detailed calculations and also
are shown in Fig. 1. These range from circular Igaand ~ modified the code to solve E¢4) for the ions.
large aspect ratio to higl® small aspect ratio and highly In the banana regime, the results of CQL3D for the co-
elongated plasma, with low and high triangularities. There-efficient L3, confirm the inaccuracy of the formulas of Refs.
fore, same values of as well asf; have been studied in 1 and 6, which is more significant at small valuesZfas
different toroidal equilibria. shown in Fig. 3. This is due to the complexity of this term,

First, following the work in Ref. 1, we show in Fig. 2 which consists of two contributions of opposite sigls; c.

and L3, i, Eq.(9), each of which having different contri-

1 butions from the small and largeregions as shown in Fig.
(a) 4. In particular the termCs; o has its main contribution

from the high energy tail in the regioo! v,~2, and there-
fore, it explains the discrepancies, in agreement with the re-
sults of Ref. 16. The termx is similar to the termCs, ¢, and

e

!‘m-g we also find about 20% differences between the exact solu-
tion of Egs.(4) and (9) and the formula in Ref. 1 in the
0 02 04 . 06 08 1 banana regime. Moreover it can be inferred from Fig. 4 that
€ both terms will have a different collisionality dependence as

(b) their main contribution come from different region. In-

creasing collisionality modifies first the smallregion and
therefore modifies firs€s, ;. This is shown in Fig. 5 where

0.5 both terms, L3, ¢ and Ls; o, are plotted vsve, . Of

course, the limit at high collisionality of3, is zero and,
therefore,L3y ¢e=— L3 i fOr ve, >10. We also show our

0 ] ] rEE fit and the fit derived in Ref. 4 from the formulas in Refs. 1
f and 2. We see that the peculiar dependencg;ebn v, , as
it even changes sign, is easier determined by the simgle

FIG. 2. Neoclassical conductivity as obtained by CQL3D, normalized to thedependence ataz ce and£32 oi - This is Why we have sepa-
Spitzer conductivity, v§a) square root of the inverse aspect ratio, ébd L. . - . .
trapped fractiorf, . The different symbols refer to different equilibria in all rated the coefficients, into two terms having different col-

the Figures. lisionality dependence, that is different effective trapped

05

Gneo/oSptz

Gneo/GSptz
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FIG. 5. Bootstrap current coefficiettls,;= L35 et L3y ¢ Vs collisionality
ve, - The solid lines are obtained from Eq45). For Egs.(15b) and(15¢),
the terms+ 1.2/(1+0.52) have been added, respectively.

ft
FIG. 3. Bootstrap current coefficief, vs f, for different charge numbet f
in the collisionless limit(CQL3D). The solid lines are obtained from Egs. ft393;f( Vey )= t ,
(15) with ff;—ee: f':ff-e'=f1. The dashed lines are obtained from Hirsh- 1+(0.55-0.1f ) Vve, +0.451—f ) ve, 1732
man’s formula(Ref. 1). (13b)
f . . . 1.4 1.9 0.3
ractions. The analytical fits to the results of CQL3D and£31= F31(X=f§]ff)5 1+ X— X2+ X3
CQLP, valid for arbitraryf,, ve, , andZ are given as fol- ¢ Z+1 Z+1 Z+1
lows: 0.2
+——X4
Ooed ) _ o cmn_g (g, 038, 059, zv1 % (149
cor 3(X=fier) = 7 Z
0.23 31 fy
-3 fier( Vex ) = , (14D
z % (133 Tt e I (1 0.1f) Vrey + O.5(1—f) v, 1Z
32 32 ei
4 Laz=Fap ed X="f 1)+ Fap il Y=F "), (153
E )= 0.05+0.62Z X — X4+ N
32_ed X)= 2(1+o.442)( ) 1+o.222[
— 3_y4 T s
1.2AX*=XH]+ 1+0.EX , (15b)
0.56+1.9% 4 . s w4
Far o= 7005042 V) " 122l Y
_ 3_vA1_ T 4
0.55Y°—-YY)] 1+O.EY , (150
32
fteff_ee( Vex )
fy
FIG. 4. Velocity dependence, normalized #g=+2T./m,, of the inte- = _ [ _ !
grands of L3, ee, solid lines, andLy, ¢, dashed lines, for low(solid 1+0.261—f) \ve, +0.181-0.37 ) ve, /\Z
circles and high(open squarescollisionality cases. (15d)

Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



2838 Phys. Plasmas, Vol. 6, No. 7, July 1999

32_ei

fteff (Vex)
1+ (1+0.6f) \ve, +0.851—0.3%,) ve, (1+2)
(158
L3=Fa(X=13), (163
& (Vew) = f
e 1+ (1-0.2f ) Vvep +0.51— 0.5 ) ve, /Z’
(16b)
1.171—1,)
H0T T 170.2%,- 0197 73
( ag+0.251—f2)\v;,
a(viy)=
'* 1+0.5v;,
—0.3152 ¢ o (17b
B R
where
Te[ev]3/2 P
asptz—1.9012104m[m Q]
(183
N(Z)=0.58+ o4
(2)=0.58+ 57517
RnZIn A
Ve, =6.921.10 18q—:ZTe, (180
eE
RnZ4InA;
b, =4.90 10 80 L :263,2 o (189
|

-4

10

FIG. 6. The coefficientLs,, open circles, and’s,, crosses, vs collision-
ality ve, , as obtained with CQLP. The solid line corresponds to #4)
and the dashed line to E(L6).
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f,=0.24

FIG. 7. (a) Coefficient« for three different values of, vs »;, . The solid
lines correspond to Eq17) and they are reproduced on the 3D pi&). 3D
view of the coefficientx in terms off, andv;, for Z=1. Note that the sharp
rise depends strongly on bothandv;, .

n
INA=31.3- In( \/_e) , (180
Te
Z3\n;
|nAii:30—|n _372—\/—I , (189)
i

with q being the safety factor, densitiesrim ® and tempera-
tures in eV. We have tested different definitionsif and

Vi, , using some averaged poloidal magnetic field instead of
rB/gR and/or some function of, instead ofe®?, for ex-
ample. However, the simple definition used here with the
combination ofRqande 2 Eqgs.(18b) and(180), gives the
best overlap of the results of the different equilibria at same
values off; andv,, , as shown in Figs. 5<@). We see also
from Egs.(14b) and(16b) that £, is indeed almost equal to
L31, except at very large., , as seen in Fig. 6 and in
agreement with Ref. 2. This is why we only had to change
slightly the collisionality dependence d6f%, as it can be
shown, using the bounce-averaged equations, fhat L3

in the collisionless limit.

Finally we have not used the same structure for the co-
efficient . First it should be emphasized that the actual co-
efficient for the ion temperature gradientds,«. Second, as
seen in Fig. ), the coefficient has a very sharp, depen-
dence, which is very sensitive also fp as shown in Fig.
7(b). It is, therefore, not possible to decouple theand v;,
dependences as is done for the other coefficients. This is why
we have modified the formula proposed by Hérssch as to
reproduce the correct results in the banana regime(1&a),
as well as in the plateau region, and such as to have a func-
tion of f, rather thane in order to be valid for any axisym-
metric geometry.
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IV. CONCLUSION form of the value ofZ, instead ofZ.;, to be used in our

We have extended the work of Refs. 1 and 2 in solvingeXpressions, in the same way as mentioned in Ref. 2. This
Egs.(3) and(4) using the exact Fokker—Planck operator andshould be performed while taking into account the inaccu-
without any approximation on the plasma geometry or colli-racy of the like-particle collision operator in NCLASS. Such
sionality. In this way we have been able to accurately detera comparison would also determine the effect of the potato
mine the neoclassical resistivity and the coefficients for thedrbits near the magnetic axis and indicate hiqvehould be
bootstrap current which allows one to calculate adapted there.
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