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Neoclassical conductivity and bootstrap current formulas for general
axisymmetric equilibria and arbitrary collisionality regime
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Expressions for the neoclassical resistivity and the bootstrap current coefficients in terms of aspect
ratio and collisionality are widely used in simulating toroidal axisymmetric equilibria and transport
evolution. The formulas used are in most cases based on works done 15–20 years ago, where the
results have been obtained for large aspect ratio, small or very large collisionality, or with a reduced
collision operator. The best expressions to date and to our knowledge are due to Hirshman@S. P.
Hirshman, Phys. Fluids31, 3150 ~1988!# for arbitrary aspect ratio in the banana regime and
Hinton–Hazeltine@F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys.48, 239 ~1976!# for large
aspect ratio and arbitrary collisionality regime. A code solving the Fokker–Planck equation with the
full collision operator and including the variation along the magnetic field line, coupled with the
adjoint function formalism, has been used to calculate these coefficients in arbitrary equilibrium and
collisionality regimes. The coefficients have been obtained for a wide variety of plasma and
equilibrium parameters and a comprehensive set of formulas, which have been fitted to the code
results within 5%, is proposed for evaluating the neoclassical conductivity and the bootstrap current
coefficients. This extends previous works and also highlights inaccuracies in the previous formulas
in this wide plasma parameter space. ©1999 American Institute of Physics.
@S1070-664X~99!03907-5#
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I. INTRODUCTION

The transport parallel to the magnetic field lines is b
lieved to be well described by neoclassical theory. The n
classical resistivity and bootstrap current are widely used
analyze experimental data and to design new experime
The recent progress on advanced scenarios and steady
operation has emphasized the importance of the boots
current in equilibrium calculation and its alignment with th
equilibrium current. New modes, namely the neoclass
tearing modes, destabilized by the modification of the lo
bootstrap current around a magnetic island, have been
served~Ref. 3 and references therein!. Relatively simple for-
mulas for the neoclassical resistivity and bootstrap curr
exist1–4 which are valid for low inverse aspect ratio,e!1,
and arbitrary collisionalityne* , or for arbitrary plasma equi
librium and low collisionality. In Ref. 4, Harris has derive
simple formulas connecting these two limits using Refs
and 2. This enabled one to study any configuration,5 as near
the center one has typicallye!1 andne* ;1, at mid-radius
ne* !1 and at the plasma edgee<1 andne* ;1, even in
reactor-like plasmas. A recent improvement has been
solve a set of multispecies fluid equations using the three
velocity moments of the Fokker–Planck equation,6 following
the work of Hirshman, using interpolation formulas for vi

a!Author to whom correspondence should be addressed. Electronic ma
dress: Olivier.Sauter@epfl.ch
2831070-664X/99/6(7)/2834/6/$15.00
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cosity moments from low and large collisionality regimes.
this way one obtains the resistivity and bootstrap current
arbitrary shape and collisionality,7 in addition to multispecies
effects. However, as a set of equations have to be solved
specific code, NCLASS, it is not of convenient use for rap
experimental diagnostics or tokamak design over a w
range of parameters. Also it does not use the full collis
operator which can lead to errors up to 20% as mentione
Ref. 6 and first shown in Ref. 8. This is why we have e
tended the work published in Refs. 9, 10 in order to hav
complete, accurate and analytical set of formulas for the n
classical resistivity and all the bootstrap current coefficien

The model is briefly presented in Sec. II and the resu
are given in Sec. III.

II. PHYSICS MODEL

The code CQLP solves the Fokker–Planck equation
ing the linearized operator on a magnetic flux surface,
cluding the advection parallel to the magnetic field.9 It does
not make any assumption on the ratio of the collision f
quency to the bounce frequency. Moreover the code uses
magnetic geometry as calculated by a toroidal equilibri
code and, therefore, uses the exact axisymmetric magn
configuration of the flux surface. One has to solve the line
ized Fokker–Planck equation for arbitrarye andne* @Ref. 2,
Eq. ~5.21!–~24!#
d-
4 © 1999 American Institute of Physics
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y ib̂•¹ f e12Ce
l ~ f e1!52~yD•¹c!e

] f e0

]c
2

qeEi

me

] f e0

]v i
,

~1!

y ib̂•¹ f i12Cii
l ~ f i1!52~yD•¹c! i

] f i0

]c
, ~2!

with

Ce
l 5Cee

l 1Cei
l :

Linearized collision operator~Rosenbluth potentials!,

~yD•¹c!s5I ~c!y ib̂•¹S y i

Vs
D ,

] f s0

]c
5 f s0F ] ln ns0

]c
1

qs

Ts

]^F&
]c

1S y2

yTs

2 2
3

2D ] ln Ts0

]c G ,

and whereyTs
2 52T2/ms andVs5qsB0 /ms are the thermal

velocity and the cyclotron frequency of speciess, I (c)
5RBf , b̂5B/B, and^F& is the flux surface averaged ele
trostatic potential. Note that we do not take into account
modifications due to potato orbits and, therefore, our res
should be slightly modified near the magnetic axis accord
to Ref. 11. Following the work in Ref. 12 adapted to th
problem in Ref. 8 and also described in Ref. 9, one can so
the following adjoint equations@using the same notations a
in Ref. 9 and Eq.~4.45! of Ref. 2#:

2y ib̂•¹xe2Ce0
l ~xe!5qey iB fe0 , ~3!

2y ib̂•¹x i2Cii
l ~x i !5qiy iB fi0 . ~4!

Then the flux surface averaged parallel current is given

^ j iB&5sneô EiB&2I ~c!pe~L31A11L32A21L34A4!,
~5!

with

A15
1

pe

]pe

]c
1

1

pe

]pi

]c
,

A25
1

Te

]Te

]c
, A2

i 5
1

Ti

]Ti

]c
, ~6!

A45a
12Rpe

Rpe
A2

i ,

where we have usedTi /ZTe5(1/Rpe21) with Rpe5pe /p,
and the coefficients are obtained from the adjoint functio
xe andx i

sneo5
qe

Te
K 1

B E y ixedvL , ~7!

L315212
1

Ipe
K E xe

f e0
Ce0

l ~g1f e0!dvL
5211

1

Ipe
K E xeZine0g1

yTe
3

y3 dvL , ~8!
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L3252
1

Ipe
K E xe

f e0
Ce0

l ~g2ef e0!dvL
5

1

Ipe
K E xene0g1F2hS y

yTe
D

1Zi

yTe
3

y3 S y2

yTe
2 2

5

2D GdvL
[L32–ee1L32–ei , ~9!

L345212
1

Ipe
K E xe

f e0
Ce0

l ~g4f e0!dvL
5211

1

Ipe
K B2

^B2& E xeZine0g1

yTe
3

y3 dvL , ~10!

a52
1

Ipi
K E x i

f i0
Cii

l ~g2i f i0!dvL
52

qe

n iTe
K E x in i0hS y

yTi
D y i

V i
dvL , ~11!

with

g15
I ~c!y i

Ve
, g2e5g1S y2

yTe
2 2

5

2D ,

g45g1

B2

^B2&
, g2i5

I ~c!y i

V i
S y2

yTi
2 2

5

2D ,

where h(x)5x23@10 erf(x)210x erf8(x)24x2 erf(x)#, ne0

53Ap/(4Zite), n i053Ap/2/(2t i), and L32–ee

;^*xeCee
l &, L32–ei;^*xeCei

l &. The code solves Eq.~3! for

the electron adjoint function, using Maxwellian backgrou
ions of chargeZ for the e- i collision contribution, and Eq.
~4! for the ions. Then the coefficients, Eqs.~7!–~11! are com-
puted using the solutionsxe andx i . Changing the flux sur-
face considered or the plasma equilibrium, one can vary
aspect ratio or the trapped fractionf t , wheref t is defined as

f t512 f c512
3

4
^B2&E

0

1/Bmax ldl

^A12lB&
. ~12!

We have used this exact definition, but an approximate
fairly accurate value can be obtained from simpler terms
described in Ref. 13. Also varying the temperature and d
sity, one can change the collisionality regime from the b
nana regime to ne* @1, where ne*
50.012ne20ZeffqR/e3/2TekeV

2 . Finally, we have varied the ion
chargeZ, to obtain the dependence onZeff . The results ob-
tained with CQLP for the coefficients Eqs.~7!–~11! in this
three-dimensional parameter space are given in the next
tion, as well as the formulas used to fit the results in terms
f t , ne* , andZeff . The code CQL3D14 has also been modi
fied to solve the bounce-averaged version of Eqs.~3!–~11!
and compute in the collisionless limit the coefficients. A
this reduces to solving a two-dimensional~2D! problem in
the velocity space, the results are more accurate and m
faster to obtain and it gives a benchmark for CQLP in t
limit ne* !0.01.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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III. RESULTS

We have solved Eqs.~3! and ~4! over a wide variety of
equilibria, trapped fractionf t ~i.e., on different flux surfaces!,
and collisionalities in order to determine accurately the fit
formulas for the neoclassical resistivitysneo, and the boot-
strap current coefficientL31, L32, L34 anda, relative to the
pressure, the electron, and the ion temperature gradie
Eqs. ~7!–~11!. Some of the different equilibria considere
are shown in Fig. 1. These range from circular lowb and
large aspect ratio to highb small aspect ratio and highl
elongated plasma, with low and high triangularities. The
fore, same values ofe as well asf t have been studied in
different toroidal equilibria.

First, following the work in Ref. 1, we show in Fig.

FIG. 1. Examples of different equilibria used in this paper.

FIG. 2. Neoclassical conductivity as obtained by CQL3D, normalized to
Spitzer conductivity, vs~a! square root of the inverse aspect ratio, and~b!
trapped fractionf t . The different symbols refer to different equilibria in a
the Figures.
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
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that the trapped fractionf t is a good parameter to encaps
late the geometrical effects on conductivity in the collisio
less limit. In Fig. 2~a!, we show the neoclassical conductivi
obtained by CQL3D, using the bounce-averaged version
Eqs.~3! and~7!, versus the square root of the inverse asp
ratio e. As one can see clearly,sneo depends not only one
but also on other equilibrium parameters. On the other ha
when plotted versusf t , then all the points are well-aligne
and sneo depends only onf t . The same is obtained for th
bootstrap current coefficients, within 1%, which shows th
f t does represent the effective trapped fraction for noncir
lar and finitee equilibria.

Different options have been used to include finite co
sionality effects in the formulas,2,4,10,15but mostly the coef-
ficients in the formulas have been modified. Asf t is a very
good parameter in the collisionless limit, it seems better
change onlyf t as a function ofne* if possible. In this way
one can first find the polynomial dependence ofsneo, L31,
L32, and a on f t in the collisionless limit using CQL3D,
which is faster and more accurate. And then determine
effective trapped fractionf t(ne* ) for finite collisionality,
while keeping the coefficient of the polynomials independ
of ne* . This procedure is also easier to find an analy
formula valid for arbitraryf t and ne* , as one does essen
tially two one-dimensional~1D! fits, instead of one 2D fit.
Finally it is interesting as one naturally obtains the effect
collisionality on the fraction of trapped particles. This proc
dure was shown to be possible forsneo andL31 in Ref. 10.
Since then we have made more detailed calculations and
modified the code to solve Eq.~4! for the ions.

In the banana regime, the results of CQL3D for the c
efficientL32 confirm the inaccuracy of the formulas of Ref
1 and 6, which is more significant at small values ofZ, as
shown in Fig. 3. This is due to the complexity of this term
which consists of two contributions of opposite signs,L32–ee

andL32–ei , Eq. ~9!, each of which having different contri

butions from the small and largey regions as shown in Fig
4. In particular the termL32–ee has its main contribution

from the high energy tail in the regiony/y th;2, and there-
fore, it explains the discrepancies, in agreement with the
sults of Ref. 16. The terma is similar to the termL32–ee and

we also find about 20% differences between the exact s
tion of Eqs. ~4! and ~9! and the formula in Ref. 1 in the
banana regime. Moreover it can be inferred from Fig. 4 t
both terms will have a different collisionality dependence
their main contribution come from differenty region. In-
creasing collisionality modifies first the smally region and
therefore modifies firstL32–ei . This is shown in Fig. 5 where

both terms,L32–ee and L32–ei , are plotted vsne* . Of

course, the limit at high collisionality ofL32 is zero and,
therefore,L32–ee52L32–ei for ne* @10. We also show our

fit and the fit derived in Ref. 4 from the formulas in Refs.
and 2. We see that the peculiar dependence ofL32 onne* , as
it even changes sign, is easier determined by the simplene*
dependence ofL32–ee andL32–ei . This is why we have sepa

rated the coefficientL32 into two terms having different col-
lisionality dependence, that is different effective trapp

e
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fractions. The analytical fits to the results of CQL3D a
CQLP, valid for arbitraryf t , ne* , andZ are given as fol-
lows:

sneo~ f teff
33 !

sSptz
5F33~X5 f teff

33 ![12S 11
0.36

Z DX1
0.59

Z
X2

2
0.23

Z
X3, ~13a!

FIG. 3. Bootstrap current coefficientL32 vs f t for different charge numberZ
in the collisionless limit~CQL3D!. The solid lines are obtained from Eqs

~15! with f
teff

32–ee
5 f

teff

32–ei
5 f t . The dashed lines are obtained from Hirs

man’s formula~Ref. 1!.

FIG. 4. Velocity dependence, normalized tov th5A2Te /me, of the inte-
grands ofL32–ee , solid lines, andL32–ei , dashed lines, for low~solid

circles! and high~open squares! collisionality cases.
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
f teff
33 ~ne* !5

f t

11~0.5520.1f t!Ane* 10.45~12 f t!ne* /Z3/2
,

~13b!

L315F31~X5 f teff
31 ![S 11

1.4

Z11DX2
1.9

Z11
X21

0.3

Z11
X3

1
0.2

Z11
X4, ~14a!

f teff
31 ~ne* !5

f t

11~120.1f t!Ane* 10.5~12 f t!ne* /Z
, ~14b!

L325F32–ee~X5 f
teff

32–ee
!1F32–ei~Y5 f

teff

32–ei
!, ~15a!

F32–ee~X!5
0.0510.62Z

Z~110.44Z!
~X2X4!1

1

110.22Z
@X22X4

21.2~X32X4!#1
1.2

110.5Z
X4, ~15b!

F32–ei~Y!52
0.5611.93Z

Z~110.44Z!
~Y2Y4!1

4.95

112.48Z
@Y22Y4

20.55~Y32Y4!#2
1.2

110.5Z
Y4, ~15c!

f
teff

32–ee
~ne* !

5
f t

110.26~12 f t!Ane* 10.18~120.37f t!ne* /AZ
,

~15d!

FIG. 5. Bootstrap current coefficientL325L32–ee1L32–ei vs collisionality

ne* . The solid lines are obtained from Eqs.~15!. For Eqs.~15b! and~15c!,
the terms71.2/(110.5Z) have been added, respectively.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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f
teff

32–ei
~ne* !

5
f t

11~110.6f t!Ane* 10.85~120.37f t!ne* ~11Z!
,

~15e!

L345F31~X5 f teff
34 !, ~16a!

f teff
34 ~ne* !5

f t

11~120.1f t!Ane* 10.5~120.5f t!ne* /Z
,

~16b!

a052
1.17~12 f t!

120.22f t20.19f t
2 , ~17a!

a~n i* !5Fa010.25~12 f t
2!An i*

110.5An i*

20.315n i*
2 f t

6G 1

110.15n i*
2 f t

6 , ~17b!

where

sSptz51.9012•104
Te@eV#3/2

ZN~Z!ln Le
@m21V21#,

~18a!

N~Z!50.581
0.74

0.761Z
,

ne* 56.921•10218
qRneZ ln Le

Te
2e3/2 , ~18b!

n i* 54.90•10218
qRniZ

4 ln L i i

Ti
2e3/2 , ~18c!

FIG. 6. The coefficientsL31 , open circles, andL34 , crosses, vs collision-
ality ne* , as obtained with CQLP. The solid line corresponds to Eq.~14!
and the dashed line to Eq.~16!.
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
ln Le531.32 lnSAne

Te
D , ~18d!

ln L i i 5302 lnS Z3Ani

Ti
3/2 D , ~18e!

with q being the safety factor, densities inm23 and tempera-
tures in eV. We have tested different definitions ofne* and
n i* , using some averaged poloidal magnetic field instead
rB/qR and/or some function off t instead ofe3/2, for ex-
ample. However, the simple definition used here with
combination ofRq ande23/2, Eqs.~18b! and~18c!, gives the
best overlap of the results of the different equilibria at sa
values off t andne* , as shown in Figs. 5–7~a!. We see also
from Eqs.~14b! and~16b! thatL34 is indeed almost equal to
L31, except at very largene* , as seen in Fig. 6 and in
agreement with Ref. 2. This is why we only had to chan
slightly the collisionality dependence off teff

31 , as it can be
shown, using the bounce-averaged equations, thatL345L31

in the collisionless limit.
Finally we have not used the same structure for the

efficient a. First it should be emphasized that the actual c
efficient for the ion temperature gradient isL34a. Second, as
seen in Fig. 7~a!, the coefficient has a very sharpn i* depen-
dence, which is very sensitive also tof t as shown in Fig.
7~b!. It is, therefore, not possible to decouple thef t andn i*
dependences as is done for the other coefficients. This is
we have modified the formula proposed by Harris4 such as to
reproduce the correct results in the banana regime, Eq.~17a!,
as well as in the plateau region, and such as to have a f
tion of f t rather thane in order to be valid for any axisym
metric geometry.

FIG. 7. ~a! Coefficienta for three different values off t vs n i* . The solid
lines correspond to Eq.~17! and they are reproduced on the 3D plot.~b! 3D
view of the coefficienta in terms off t andn i* for Z51. Note that the sharp
rise depends strongly on bothf t andn i* .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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IV. CONCLUSION

We have extended the work of Refs. 1 and 2 in solv
Eqs.~3! and~4! using the exact Fokker–Planck operator a
without any approximation on the plasma geometry or co
sionality. In this way we have been able to accurately de
mine the neoclassical resistivity and the coefficients for
bootstrap current which allows one to calculate

^ j iB&5sneô EiB&2I ~c!peFL31

p

pe

] ln p

]c
1L32

] ln Te

]c

1L34a
] ln Ti

]c G ,
where the coefficients are given in Eqs.~13!–~17! as func-
tions of f t , Eq.~12!, ne* andn i* , Eq.~18!, andZ. Note that
the parallel current can also be written as follows, assum
] ln ne/]c5] ln ni /]c:

^ j iB&5sneô EiB&2I ~c!p~c!FL31

] ln ne

]c
1Rpe~L31

1L32!
] ln Te

]c
1~12Rpe!

3S 11
L34

L31
a DL31

] ln Ti

]c G .
AsL31'L34'20.5,L32'0.2, a'20.5, andRpe'0.5, one
sees that the coefficient of the bootstrap current driven by
density gradient is about20.5, while it is around20.15 for
Te and 20.1 for Ti . Therefore, density gradients are mo
efficient in driving bootstrap current, which can be signi
cant for the neoclassical tearing modes as mentioned in
3.

For multispecies cases we could use our code to s
the coupled equations, but it is out of the scope of this pa
Also a comparison of our formulas with the results of t
NCLASS code should enable one to determine the cor
Downloaded 31 Aug 2001 to 128.178.128.176. Redistribution subject to A
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form of the value ofZ, instead ofZeff , to be used in our
expressions, in the same way as mentioned in Ref. 2. T
should be performed while taking into account the inac
racy of the like-particle collision operator in NCLASS. Suc
a comparison would also determine the effect of the pot
orbits near the magnetic axis and indicate howf t should be
adapted there.
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