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Abstract

A new 3-D Fokker-Planck code, CQL||, which solves the Fokker-Planck
equations with two velocity coordinates and one spatial coordinate parallel to
the magnetic field lines B/B, has been developed. This code enables us to
model the parallel transport for low, intermediate and high collisional
regime. The physical model, the possible relevant applications of the code as
well as a first application, the computation of the neoclassical resistivity for
various collisionalities and aspect ratios in tokamak geometry are
presented.

1. Introduction

There are numerous situations in tokamak plasma transport and
divertor physics which are in an intermediate collisional regime, where the
mean-free path Amfp is comparable to plasma parameter scale-lengths L
along the magnetic field lines. Neither fluid nor low collisionality theory is
fully applicable. To study this class of problems we are developing a new
Fokker-Planck (FP) code CQLj which solves the FP equations with two
velocity coordinates (u, momentum per rest mass, and 0, pitch-angle), and
one spatial coordinate, s, along the magnetic field lines B/B. CQLy is
constructed building on the CQL3D code [1] which solves the FP equations
with the same velocity coordinates, but the spatial coordinate is the plasma
radius r rather than s. The diverse features of CQL3D are kept; multi-
species, nonlinear, relativistic, toroidal geometry, non-circular flux
surfaces. The bounce-averaging along B performed in CQL3D has been
removed in CQLy, allowing us to model arbitrary collisional regime. The
equation is coup{led either to quasi-neutrality condition or to Poisson
equation, in order to calculate iteratively the electric field component along
B, Ej, in a consistent way. Finite differences and an alternating direction
implicit method (ADI) are used to solve the equation. The main application
of this new code is in edge physics, where Amfp is often comparable to the
scale-length of the temperature gradient, for example, and also the sheath
and pre-sheath problems near the divertor plate.
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In the following we shall describe the physics problem, the numerical
method used and list possible applications of CQLj. We shall also present a
few benchmarks and a comparison of the neoclassical resistivity for various
finite collisionalities vi and inverse aspect ratio e obtained with CQL| with
the formula given in Ref. 2 by Hinton and Hazeltine (HH formula).

2. Physics Model and possible applications

We use the Fokker-Planck equation, as described in Ref. 1, to model the
evolution of the distribution function when collision and different forces,
sources and sinks are present. The geometry of the plasma can range from
a uniform magnetic field 1-D (one spatial dimension) plasma to non-
up/down symmetric noncircular cross-section, axisymmetric toroidal
plasma on a single flux surface.

The fully nonlinear effects of collisions are modeled using the Rosenbluth
potentials. Alternatively, we assume a partially non-linear collision
operator in which the evolved species (called "general” species hereafter)
collide with a fixed background plasma made of species having shifted
Maxwellian distribution conserving momentum, and with a consistent
density variation along B. We can study the evolution of one or several
"general" species, electrons and/or ions, having arbitrary distribution
function fa(u, 6, s; t), interacting with the background plasma and in
between themselves. All species may be "general" which corresponds to the
fully nonlinear problem.

The poloidal electric field and its component along B, which is created by
a non-zero charge density due to the loss of the charges along the magnetic
field lines, is calculated from the Poisson equation or alternatively according
to charge neutrality. In addition, we can include an external toroidal or

radial electric field (E¢ ohmic; Er ).

We consider the gyro-averaged distribution function, assume zero
Larmor radii, zero banana width and axisymmetric geometry. The equation

is of the form:

f
g}= C(H) + E) + Q) + S() + AD (1)

where f=f(u,0,s;t), u=yv, v is speed, and y=\ 1+u2/c2. C, E, Q, and S are
operators in the momentum space giving the diffusion and convection due to
collisions, the effect of the electric field, the rf wave-fields, and additional
sources/sinks, respectively [1]. The term A(f) given by:

w v of  of
Ap=-LYE_ &
H=-73 v 96 I3’

with y(s)=B(s)/B(s=0)=B(8)/By, reflects the convection along the magnetic
field line. Integrating Eq. (1) over the velocity space we obtain:
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on/dt + V - [aBu' w)f = l[d&u' S

That is, if there are no sources or sinks we recover the continuity equation

as V ~_|'fuld3u is zero in our model. In the code we introduce
0g=arcsin (sin6/\), such as to reduce A(f) to:

dof(1,0(0¢,s),8,t)

s 00

Note also that integrating Eq. (1) over q uj| d3u (first moment) and using the
charge neutrality condition, we can obtain an equation for Ej|.

(2)

A(f) = — u cos(0,,8)

The most relevant applications of such a code are in the plasma edge and
divertor physics. A first application will be to assess the problem of the
parallel heat flux in a collisionless or intermediate regime, which would
quantify better the results given by Khan and Rognlien [3]. This code will
also enable us to better understand the physics of parallel heat and particle
transport near the divertor plate, the sheath and pre-sheath problems and
numerous other problems directly relevant for the design and under-
standing of divertors as they are often in an intermediate collisional regime.

Another set of applications will be the comparison with standard
neoclassical transport and extension of the existing formulae, for example
for resistivity or bootstrap current, to finite inverse aspect ratio € and
collisionality va and to real tokamak geometry.

3. Numerical method

We use the same finite difference method as in CQL3D [1] to approximate
the diffusion operator in velocity space. The Rosenbluth potentials are also
computed using a Legendre decomposition. To approximate A(f) in the form
of Eq. (2) we use a simple forward/backward implicit method depending on
the sign of cos 6 (uy<0 or u>0, respectively), or a centered implicit scheme.
In order to solve Eq. (1) while keeping a maxmimum 2-D dimension for the
solvers, we use an alternating direction implicit method (ADI) as follows:

fn+l/2_fn

s =[C+E+Q+ SIER) + AR) (3a)
fn+lf n+1/2

——; ~[C+E+Q+S] (£n+12) 4+ A(fn+]) (3b)

If the electric field is computed using the Poisson equation or the charge
neutrality condition, then it can be determined in between time-steps or half
time-steps. In the following we use a circular plasma with zero Shafranov
shift and a regular mesh along s with s=0 at the outer midplane. Thus the
point 1=1s/2+1 is at the inner midplane and the point l=ls+1 coincides with
1=1 (periodicity). The theta mesh is constructed such that the points (6,1) lie
on pi=cst lines which enables us to easily calculate the term A(f) in Eq. (2).
However, it means that there are less 6 points at 1=18/2+1 than at 1=1.
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4. Results

In this paper we present only results obtained with a fixed ohmic electric
field (E¢ ~ 1/R) and we assume Q=S=0 and no electrostatic electric field. As a
first benchmark we have calculated the value of the parallel resistivity with
respect to the Spitzer resistivity mspt, at various values of s when the
transport is turned off. That is, the different s positions are independent and
they should all have n/Mgpt, =1 as there are no trapped particles. We obtain
0.99 for each s with some minor differences near l=ls/2, at the inner
midplane, where there are less 6—mesh points.

As a second step we turn the parallel transport on and compute the
neoclassical resistivity, ncqL= <E|B>/<jjB>, which we compare for
different € and va with the resistivity obtained with CQL3D [1], ncQLaD , and
with the Hinton-Hazeltine formula, ngg (Ref 2, eqs.6.122 and 6.126 with
Zefr=1), which we modify, in order to have the correct limit e->1, as follows:

1
MHHMSptz =7 Kagve + Kag- e )

Kag = 1.83 (1 + 0.68 W3 + 0.32va)1 (1 + 0.66 ve £3/2)1

We have added the term proportional to € in Eq.(4). We use the following
plasma parameters: T = 10 keV and ne = 1011 cm-3, such that we are in the
zero collisionality limit as ve<10-4, and we vary the inverse aspect ratio €. In
this case, CQLj should recover the results of CQL3D, for all € and those of
Hinton-Hazeltine for small e. This is clearly seen on Fig. 1 where the
maximum relative error with CQL3D is 7%. Note that the HH formula is
very good for large e as well. This is due to the modification of the original
formula, otherwise Eq.(6.122)[2] gives <0 for £>0.3, and to the fact that we
have a zero-shifted equilibrium and that the coefficient of Ve in nyy is 1.83
instead of 1.95 as in the analytic formula.

As a third benchmark, we keep € = 0.06 fixed and vary vs, changing Te from
10 to 0.1 keV and ne from 1011 to 1014 cm-3. The results are shown on Fig. 2
and we see that ncoqr follows well, within 8%, ngn. We plot ncqrsp to pomt
out that, as the equations are bounce-averaged, it can only model the ve = 0
limit. We have also plotted the original ngy formula to show that even for
€=0.06, it makes a noticeable 10% difference.

Fxg 3 shows N/Msptz (Ve) for two different €. Note that we have changed the x-
axis compare with Fig.2, in order to remove the direct dependence of vp on &.
As on Fig.2, we clearly see the three different regimes: banana, vae3/2<10-2,
plateau, 10'2Sv§£3/251-10, and Pfirsch-Schliiter, 10<vge3/2. We have seen on
Fig.1, that the ngy formula reproduces correctly the effect of large € on the
neoclassmal resistivity. Fig.3 confirms this results for finite € and arbitrary
ve, as the two curves obtained from CQL; and HH are very similar for both €.
However we have found in a seperate study, assuming ve=0, that the HH
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formula should be slightly modified for €20.2 when equilibria with non-
negligible Shafranov shifts are considered. Thus, we shall consider these
equilibria with finite v; as well in a different study.

5. Conclusion

We have developed a 3-D Fokker-Planck code CQLy which can model the
transport along the magnetic field line for arbitrary collisional regime and
axysimmetric toroidal geometry. We have shown that it gives the correct
results for the neoclassical parallel resistivity in the two known limits, that
is for ve=0 and arbitrary &, comparing with CQL3D, and for e=0 and
arbitrary ves, comparing with the Hinton-Hazeltine formula. Moreover, we
have shown that for finite ¢, up to 0.4, the Hinton-Hazeltine formula is still
valid for arbitrary vs, at least with a circular non-shifted equilibrium.
Further studies, using different equilibria, are underway to better
characterize the domain of validity of this formula.
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Fig.1: Resistivity versus € for n=1011cm-3 and T=10keV, i.e. ve<10-4.
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Fig. 8: Resistivity vs. v3 €3/ for €=0.2 and £=0.4, using CQLy and Eq.(4).
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