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New simple accurate formulas for geometric quantities for tokamak plasmas are given.
The formulas are valid for both positive and negative triangularity.
They are typically useful for DEMO and system codes studies.
A formula for the trapped fraction is also given.
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a b s t r a c t

Formulas for the volume, poloidal and toroidal surfaces, poloidal length, plasma current, and hence aver-
age poloidal field, are determined using global parameters of tokamak plasmas. Previous formulas did
not include systematically the effect of triangularity and in particular are inaccurate for negative tri-
angularity cases. Since tokamaks with negative triangularity can be attractive for DEMO reactors [1,2],
it is important to have updated formulas. It is also shown that the combined effect of finite triangu-
larity and inverse aspect ratio was not correctly taken into account. Previous formulas were also using
in some cases shaping parameters at the 95% poloidal flux surface. It is shown that this is misleading
and the new formulas, including Ip and q95, use the effective parameters, �, ı, Rgeom, � of the rele-
vant flux surface, in this case of the last closed flux surface. Only the value of the safety factor, q, is
ill-defined at the plasma edge for divertor cases, thus q95 is still being used. A new global parameter,

w07, related to the radial width of the plasma shape at 70% of the maximum height is introduced to
take into account the squareness present in most plasma shapes, in particular single-null diverted ones.
We also provide a simple formula for the trapped fraction which includes the effects of triangularity.
The trapped fraction is required for evaluating the neoclassical conductivity and bootstrap current in
particular.

© 2016 Elsevier B.V. All rights reserved.
. Introduction

The first steps to finding new plasma geometries and profiles,
elevant for some specific objectives, consist of 0D analyses often
erformed with system codes like [3–6] and refs. therein. The first

asic parameters are related to the plasma geometries, like volume
nd surfaces, which need to be characterized by a few number of
arameters like major radius, minor radius and triangularity. The
esign of a new tokamak, for example, also consists of equilibrium

E-mail address: Olivier.Sauter@epfl.ch

ttp://dx.doi.org/10.1016/j.fusengdes.2016.04.033
920-3796/© 2016 Elsevier B.V. All rights reserved.
and stability calculations based on a series of characteristic shapes
and profiles. The equilibrium code CHEASE [7] can use the following
simple shape definition for the plasma boundary:

R = R0 + a cos(� + ı sin � − � sin 2�), (1)
Z = �a sin(� + � sin 2�), (2)

where R0, a, �, ı and � are the plasma major radius, minor radius,
elongation, triangularity and related to the plasma squareness
respectively. We use the following definitions:

dx.doi.org/10.1016/j.fusengdes.2016.04.033
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
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R0 = Rgeom = Rmax + Rmin

2
,

a = redge = Rmax − Rmin

2
,

� = a

R0
,

� = �edge = Zmax − Zmin

Rmax − Rmin
,

ı = ıedge = ıtop + ıbottom
2

,

ıtop = R0 − R(Z = Zmax)
a

,

ıbottom = R0 − R(Z = Zmin)
a

.

(3)

They are defined for any given flux surface including the last
losed flux surface (LCFS) and including non up-down symmetric
nd diverted shapes. They are evaluated at the plasma edge, if not
ndicated otherwise, as for example in Eq. (3). The aim is to obtain
he basic global plasma shape characteristics based on these param-
ters. The “previous” formulas tested in this paper and eventually
odified are the following [8,9]:

prev
p = 5a2B0

q95R0

[
1 + �2

95(1 + 2ı2
95 − 1.2ı3

95)
2

][
1.17 − 0.65�

(1 − �2)2

]
, (4)

prev = 2�2R0a
2�95, (5)

prev
p = Ip

5af (�95)
, (6)

prev
p = 2�R0(2�af (�95)) = 4�2R0af (�95), (7)

(�95) =
√

1 + �2
95

2
. (8)

hese relations, or variants of these, have been used for the ITER
esign since the end of the eighties ([8,9] and refs. therein) and are
sed in present system codes for DEMO studies for example [4–6].
ther more “recent” formulas, in particular for the volume, have
een determined including the edge shaping parameters and will
e discussed as well [3,5] (using the up-down symmetric formulas
rom Ref. [5] in some cases):
rec = 2�2R0a
2�

[
1 − (1 − 8

3�
)ı�

]
, (9)

rec
p = 4�2R0af (�) = 4�2R0a

√
(1 + �2)/2, (10)

ig. 1. Plasma boundaries used to compute the various quantities with the CHEASE equil
re not up-down symmetric.
Design 112 (2016) 633–645

Lrecp = 4�E(m = 1 − 1/�2), (11)

Srec� = �a2�, (12)

where E(m) is the complete elliptic integral of the second kind
and Eq. (11) is the exact formula for the perimeter of an ellipse
of elongation � (see also Appendix A).

2. Equilibria and method used

The equilibria used in this paper are shown in Fig. 1, normalized
to their geometric major radius (a) or not (b). These equilibria have
been calculated with the CHEASE fixed boundary equilibrium code
[7] with various q profiles and edge �, ı values. The values labelled
“95” are values at norm = 95%, that is at a given flux surface slightly
inside the LCFS, where  is the poloidal flux with the general defi-
nition given in [12]. This was first used to define an equivalent edge
safety factor for diverted plasmas, since qedge becomes infinite in
this case. The value of q95 does represent a useful parameter, for
example when near or below 2 it is usually ideal MHD unstable.
It happens that values defined in Eq. (3) have also been defined at
 norm = 95%, yielding �95 and ı95, for example for the volume of the
LCFS as in Eq. (5). This is not necessary since the plasma shape is well
defined up to the last closed flux surface and is actually misleading
since they do not represent adequately the shape at  norm = 100%
as will be seen below, but represent the shape at  norm = 95%.

The values and formulas which will be discussed in this paper
are related to the volume inside the LCFS, V, the surface area around
the LCFS in the toroidal and poloidal direction, named Ap, the sur-
face of the plasma cross-section in the radial and poloidal direction,
named S� , the poloidal length around the plasma cross-section Lp

and the plasma current Ip, yielding the average poloidal magnetic
field Bp:

V =
∫
dV = 2�

∫
R

|∇ |dlpd , (13)

Ap = 2�

∫
Rdlp, (14)

S� =
∫
d�� =

∫
1

|∇ |dlpd , (15)

∫

Lp = dlp, (16)

Ip =
∫
j�d��, (17)

ibrium code. (a) Shapes normalized to R0, (b) shapes in [m]. 16 out of 99 equilibria
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ig. 2. Previous formulas to be tested divided by the respective values obtained w
q. (7) (circles) and Eq. (10) (triangles), (c) poloidal length Eq. (20) (circles) and Eq.
triangles). (For interpretation of the references to color in text, the reader is referre

p =
∫
Bpdlp∫
dlp

= 	0 Ip
Lp

, (18)

rom Eqs. (6), (16) and (18) we can write the previous formula used
or Lp:

p = 	0Ip
Lp

= 4�10−7Ip

2�L̃p
= Ip[MA]

5L̃p
, (19)

prev
p = 2�L̃prevp , (20)

˜prev
p = af (�95). (21)

We can now plot the previous formulas divided by the exact val-
es obtained by CHEASE versus ı95 for example. Eqs. (5), (7), (20)
nd (4) are shown in Fig. 2 (red circles). We see that the volume is
ithin 4% in the positive ı range but clearly deviates at negative

riangularity and large positive ı. We also see a wide spread, not
entered around 1, of the fit at zero triangularity. This is because�95
nd not� is used in Eq. (5) which under-predicts slightly the volume
s discussed below. The flux surface area also deviates mainly for
egative ı. On the other hand the value of Lp is not very accurate for
oth positive and negative triangularities. Finally the most striking
roblem is with the plasma current, which is over-estimated by
factor of up to two at triangularities near −0.6. The formula for
prev
p does depend on triangularity, Eq. (4), however it has been con-

tructed for positive ı plasma boundaries and therefore does not
ollow the correct trend at negative ı. In more recent works, the
alue of the edge shaping parameters has been used and we show
qs. (9), (10) and (11) in Fig. 2 as well with blue triangles, and Ip
e CHEASE code for: (a) Volume Eq. (5) (circles) and Eq. (9) (triangles), (b) Area Ap

triangles), and (d) Plasma current Eq. (4) (circles) and Eqs. (11) and (12) of Ref. [3]
he web version of the article.)

from Eqs. (11) and (12) of Ref. [3]. Note that even if ı� is taken into
account in the volume, for example, the overall more recent formu-
las do not fit the data much better. Even Eq. (11), which is exact for
an ellipse and thus yields a ratio=1 for ı= 0, tends to overestimate
the CHEASE value for non up-down symmetric plasmas and ı /= 0
(Fig. 2(c), triangles).

3. Why using ı, � rather than ı95, �95?

In the new formulas, we shall use ı and � even for Ip. Before
presenting the new formulas, let us see the main dependencies of
the terms considered and demonstrate why it is a better choice.
First, the volume of an ellipse is exactly given by Eq. (5) with �95
replaced by �, and the volume, areas and length of a given flux
surface are naturally best parametrized by the values of a, R0, ı and
� of the respective flux surface, that is of the LCFS in particular. Let
us look at the ratio Ap/Lp using Eqs. (7) and (20):

Aprevp

Lprevp

= 2�R0. (22)

Thus we should have Ap/(2�R0Lp) = 1. This ratio is plotted in Fig. 3
versus (ı�) (stars) and versus (ı95�) (open circles). First we see that
it is not equal to 1, except for ı= 0. Then we observe a nice align-
ment of the points using ı, while it is not at all the case with ı95. The

latter is due to the fact that the “penetration” of edge triangular-
ity and elongation inside the LCFS depend on the q profile and the
edge ı in particular. We show in Fig. 4 the various q profiles used in
this set of equilibria, which are relatively standard with varying q95
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R [Z = Z + 0.7(Z − Z )] − R [Z = Z + 0.7(Z − Z )]
ig. 3. Ap/(2�R0Lp) from CHEASE versus (ı�) in blue stars and (ı95�) in red open
ircles. In black, the line y = 1 −0.32x is plotted. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of the article.)

alues, and the related li(3) [7] values, which are standard as well.
ote that li values between 0.5 and 1.1 are expected in most sce-
arios. Positive and negative ı lead to very different “penetration”
f the shaping parameters and thus very different ı and � profiles
s seen in Fig. D24. Note that the ratio of �/�95 tend to increase
ith � and ı and is within 10% in this set of equilibria, except at

ery high ı where it reaches 20%. A difference of 10% in estimated
olume would directly reflect in a different expected fusion power
nd therefore can be important in DEMO studies. On the other hand,
ven if using the new formulas, an attractive solution found by a
D system code should be checked with an equilibrium solver and
D studies. Note that the ratio of ı/ı95 is between 0.9 and 1.4 in the
quilibria used here.

. New formulas

We can now determine the new formulas. Following the
bserved relation between Ap and Lp (Eq. (22)) and Fig. 3 (solid
ine) we first define:

new
p = 2�R0(1 − 0.32ı�)Lnewp . (23)
e then need to find Lnewp . Using Eq. (20) we start from Lp ∼ 2�af(�)
nd we plot Lp/(2�a) versus elongation in Fig. 5. We see that actu-
lly it is relatively linear in the usual range of elongations [1, 2.5].
ctually the function f(�) can be fitted with a line within 1.5%

Fig. 4. (a) Various q profiles from the set of equilibria shown in Fig. 1
Design 112 (2016) 633–645

for 0.8 <� < 3.1 (see Appendix A). Fig. 5 shows that 0.45 + 0.55� is
simpler and more appropriate, thus defining the new fnew(�) func-
tion to be used (Eq. (A.2)). There remains a small dependence on
triangularity as seen in Fig. 5(c), leading to less than 2% deviations.
Using the more precise formula from Ramajunan for f(�) [13], Eq.
(A.1), which yields the exact perimeter for a pure ellipse (Appendix
A), reduces the scatter as seen in Fig. 5(d). However for shapes
with some squareness or up-down asymmetric shapes, it does not
reduce the error significantly.

Let us first discuss the effect of up-down asymmetry. In this
study, there are 16 equilibria out of 99 with single-null up or
down, based on typical present tokamak equilibria with posi-
tive ı cases, thus as well ITER- and DEMO-like, and based on
Ref. [2] and TCV experiments for negative ı. We have also used
the series of TCV experiments used to study the effect on rota-
tion of changing the X-point major radius position from HFS to
LFS [10,11] (where HFS and LFS are the high- and low-field sides
respectively). In all these cases we find that taking the aver-
age �, ı values between the top and bottom parts, as defined in
Eq. (3) and w07 in Eq. (24), resolves the main differences with
respect to up-down symmetric plasmas. This is expected since
all the geometric quantities discussed here are the sum of the
bottom and top parts (with respect to Z = Zaxis). This is of course
also why we use formulas of the form V[ı] = V0(1 + aı+ bı2) which
yields Vtop + Vbot = V[ı= (ıtop + ıbot)/2] + V0b(ıtop − ıbot)2/4, thus only
an error of less than 2% even if |ıtop − ıbot| = 0.3, for b ≤ 1. The main
outliers in Fig. 5 are actually those with significant squareness, like
the ones in Refs. [10,11] and those with � /= 0 in Eqs. (1) and (2) as
discussed below.

The effect of squareness is illustrated in Fig. 6, where three
shapes with � = 1.7, ı= 0.4 and � = 0.2, 0 and −0.3 are shown (Eqs.
(1) and (2)). It is clear that these shapes have different perimeter,
surfaces and volume, although they have the same elongation, tri-
angularity and aspect ratio. Actually the yellow line reaching 1.06
in Fig. 5(c and d) and the light blue line reaching 0.97, at ı= 0.4,
correspond to the equilibria with � = 0.2 and −0.3 shown in Fig. 6,
respectively. We propose to take the radial distance between the
points at 70% of the maximum height as a measure of the plasma
squareness. From Eqs. (1) and (2) and � = 0, we see that it cor-
responds to the points at � = arcsin(0.7) ∼ ±45◦ and ±135◦. The
distance w07 is normalized by the value obtained with � = 0:
wtop07 = LFS 0 max 0 HFS 0 max 0

2a cos[arcsin(0.7)]
,

wbot07 = RLFS[Z = Z0 + 0.7(Zmin − Z0)] − RHFS[Z = Z0 + 0.7(Zmin − Z0)]
2a cos[arcsin(0.7)]

,

. (b) Internal inductance li(3) [7] versus ı for these equilibria.
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Fig. 5. Dependence of Lcheasep /(2�a) versus �. (a) LCFS values, (b) profiles for each equilibrium using local flux surface values. Dashed-dotted lines correspond to f (�) =√
of Lcheasep

Ramanujan

y e linea
A rred to

a

w

I
t
c

F
i
�
b

(1 + �2)/2 and dashed lines to 1 + 0.55(�− 1). (c) Profiles from each equilibrium
ielding the perimeter of an ellipse as 2�af(�) [13], better for a pure ellipse but th
ppendix A). (For interpretation of the references to color in text, the reader is refe

nd averaged:

07 = wtop07 +wbot07 . (24)

2

n this way,w07 is near 1 for small squareness and (w07 − 1) yields
he degree of squareness. There is a small ı dependence that we
ould have added into the definition, using Eqs. (1) and (2) (see

ig. 6. Shapes with R values at Z = 0.7(Zmin/max − Zaxis). The distance marked “∼w07a”
s w07(2a cos[arcsin(0.7)]) and w07∼1 in case of an up-down symmetric shape with
= 0 as defined in Eqs. (1) and (2). Note thatw07 is the average between the top and
ottom values for up-down asymmetric plasmas.
/(2�a)/(1 + 0.55(� − 1)) versus ı. (d) Same as (c) but using f(�) , Eq. (A.1),
r fit proposed with f = 0.45 + 0.55� is accurate within 1% and is sufficient (see also
the web version of the article.)

Appendix C), but this will be included in the resulting formulas in
any case. The relation between � and w07 for plasma shapes pro-
vided by Eqs. (1) and (2) is discussed in Appendix C. We plot now the
value of Lp divided by 2�a[1 + 0.55(�− 1)](1 + 0.08ı2) versusw07 in
Fig. 7. We see that there remains a relatively linear dependence
on w07 which we can add to the final formula. This leads to the

following formulas for Lnewp and thus Anewp from Eq. (23):

Lnewp = 2�a[1 + 0.55(� − 1)](1 + 0.08ı2)[1 + 0.2(w07 − 1)], (25)

Fig. 7. Lcheasep /{2�a[1 + 0.55(� − 1)](1 + 0.08ı2)} versus w07.
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Fig. 8. Lp/Lcheasep versus ı for Lnewp Eq. (25)), Lprevp Eq. (20) and Lbasicp Eq. (27).

F

A

n
a
(

L

0

F
a

ig. 9. (a) Anewp /Acheasep (Eq. (26)) and Aprevp /Acheasep (Eq. (7)) versus triangularity.

new
p = 2�R0(1 − 0.32ı�)Lnewp . (26)

Fig. 8 shows the comparison with the CHEASE results of the
ew formula for Lnewp (stars) versus ı, yielding less than a 2% error,
s compared to the previous formula having up to 12% errors (Eq.

20)). We also show the basic straightforward relation:

basic
p = 2�a[1 + 0.55(� − 1)], (27)

ig. 10. Vchease/(2�R0S�) vs ı� for the equilibria considered ((a) edge values, (b) profiles f
nd �, different from (1 − 8/3�) used previously.
Fig. 11. Vchease/(2�R0S�)/(1 − 0.25ı�) vs ı�.

in Fig. 8 with triangles leading to a 5–6% error (same overall
accuracy with Ramanujan’s formula). Note that the (1 + 0.08ı2)
dependence is illustrated in Fig. 5(d) and appears a bit too strong.
However, once the dependence on w07 is taken into account, the
resulting term does follow this ı dependence. This is because there
is a small ı dependence inw07 as mentioned earlier and can be ver-
ified by the fact that there remains no significant ı dependence in
Fig. 8 (stars). In Fig. 9, we show the comparison for Ap, comparing
Eqs. (26) (stars) and (7) (circles) with the CHEASE results. The new
formulas for Lp and Ap are better and accurate within 2%.

Let us now look at the volume (Eq. (13)) and poloidal cross-
section surface S� (Eq. (15)). Again from the formulas valid for an
ellipse, we expect V = 2�2a2R0� and S� =�a2�, thus V/S� = 2�R0. We
plot in Fig. 10 the value from CHEASE of V/(2�R0S�) versus ı �, for
both the edge values (a) and the profiles for each equilibrium using
the local values (b). We see that it is not equal to one, except for
zero triangularity, and follows well a linear dependence versus (ı�),
as seen previously for Ap/Lp. We also show the dashed line corre-
sponding to Eq. (9) with 1 − 8/3�≈ 0.15 yielding a slightly different
dependence on ı�. Fig. 11 shows that the following fit provides the
volume from the cross-section within less than 2%, even for the
special outlier shapes:

Vnew = 2�R (1 − 0.25ı�)Snew. (28)
�

Looking now at the surface S�/(�a2�), we find that it is also
essentially linear with w07 as seen in Fig. 12, for both the edge

or each equilibria). Again, there remains a relatively strong dependence on both ı
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Fig. 12. Schease
�

/(�a2�) vs w07 for the equilibria considere

Fig. 13. (a) Snew
�
/Schease
�

(Eq. (29)) and Sprev
�
/Schease
�

(with Sprev
�

= �a2�95) versus tri-

a
b
ı

v
f

S

w
v

F

ngularity. Note that using �a2� leads to values mainly between 1 and 1.15, so not
etter on average than �a2�95 since it is over-estimating the cross-section area for
/= 0 or w07 /= 1 (similarly for the volume as seen in Fig. 2(a)).

alues (a) and the profiles (b). We can therefore define the new
ormula for the surface S� as follows:
new
� = �a2�[1 + 0.52(w07 − 1)], (29)

ith w07 defined by Eq. (24) as before. The ratio with the CHEASE
alues is shown in Fig. 13 versus ı and compared to the previous

ig. 14. (a) Vnew/Vchease (Eq. (28)) and Vprev/Vchease (Eq. (5)) versus triangularity.
d ((a) edge values, (b) profiles for each equilibria).

formula taken from Sprev
�

=Vprev/(2�R0)=�a2�95 (Eq. (5)). We see that
Eq. (29) is quite accurate and we get the same for the volume
(Fig. 14), new fits within 2% of the CHEASE results. Note that the pre-
vious formulas did not take into account the effect of squareness. As
mentioned above, more recent formulas do take into account the
effects of ı�, as well as using the local values instead of the values
at norm = 95%. However the present new formulas are shown to be
more accurate also for positive ı. Looking closer at the formulas for
Ap and Lp in Ref. [5], first we note that E1(�) = 2/� �E(

√
1 − 1/�2)

can be approximated by 0.55� + 0.45 as demonstrated above, which
means that Lbasicp , Eq. (27), is actually the same as Eq. (13) of Ref.
[5] since
∗

L ≈ 1 with the above approximation. Similarly, one can

show that arcsin(
√

1 − 1/�2)/
√

1 − 1/�2 can be approximated by
�/(0.65� + 0.35) which yields Ap/Lp/(2�R0)|ref5 ≈ 1 −0.19 ı�, almost
independent of � for � > 1.4. It confirms that the main dependence
is on ı� although with a different coefficient from the value 0.32
found in Fig. 3.

We can now look at the formula for the plasma cur-
rent or equivalently for q95. From the cylindrical definition,
we have qcyl = 2�aB0/2�R0Bp = aLpB0/R0	0Ip. One has also used
qeng = 5B0a2�/R0Ip as characteristic safety factor, identical to qcyl
taking Lp = 2�a� and which has similarities with Eq. (4). Starting
from these considerations, we obtain the following formula for q95

and Ip[MA]:

qnew95 = 4.1a2B0

R0Ip,MA
[1 + 1.2(� − 1) + 0.56(� − 1)2]

Fig. 15. (a) qnew95 /q
chease
95 versus ı, using Ip from the respective CHEASE equilibrium.
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ective CHEASE equilibrium. (b) Zoom of the y-axis close to 1.
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Fig. 16. (a) Inewp /Icheasep versus ı, using q95 from the resp

× (1 + 0.09ı+ 0.16ı2)
1 + 0.45ı�
1 − 0.74�

[1 + 0.55(w07 − 1)],

(30)

new
p,MA = 4.1a2B0

R0q95
[1 + 1.2(� − 1) + 0.56(� − 1)2]

× (1 + 0.09ı+ 0.16ı2)
1 + 0.45ı�
1 − 0.74�

[1 + 0.55(w07 − 1)].

(31)

The ratio of q95 over the CHEASE values are shown in Fig. 15 and
imilarly for the plasma current in Fig. 16. It shows that Eqs. (30)
nd (31) are accurate within 10% for the cases considered here over
he whole range of triangularities, including in particular negativeı.
he fit has been constructed such that the dependence of each term
s recovered individually. This is shown in Appendix B, Fig. B21. For
xample, using Eq. (30) without the � term, shows a dependence
ersus � of (1 + 1.2(�− 1) + 0.56(�− 1)2) (Fig. B21(a)). This allows to
aturally take into account non up-down symmetric plasmas, as
iscussed earlier, and ensure realistic dependencies. We have tried
o minimize coupled parameters and have checked that it does not
ead to more accurate formulas.

For completeness, we verify the last formula for the average Bp,

y comparing the result using the new formulas for Ip (Eq. (31))
nd Lp (Eq. (25)) introduced into Eq. (19) with the direct result
rom CHEASE:Bcheasep = 	0I

chease
p,MA /L

chease
p . We see that they follow

ne another within 10% over a large range.

ig. 18. (a) Trapped fraction profiles from CHEASE for the various equilibria versus ı. (b) T
Fig. 17. Bnewp versus Bcheasep using the CHEASE q95 value of the respective equilib-
ria and the formulas for Inewp and Lnewp , Eqs. (31) and (25), to calculate Bnewp =
	0Inewp,MA/L

new
p .

***Fig. 17

5. Trapped fraction
The trapped fraction ft is defined by:

ft = 1 − 3
4

〈B2〉
∫ 1/Bmax

0

�d�

〈√1 − �B〉
, (32)

rapped fraction from Eq. (34), using the local values, versus the CHEASE calculation.
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f (�)new = 1 + 0.55(� − 1). (A.2)

They are shown in Fig. 19 divided by Eq. (A.1) versus elongation. It
shows that the new relation, Eq. (A.2), is accurate within 1.5% for
O. Sauter / Fusion Engineerin

here 〈 · 〉 means the flux surface average. It is known to be impor-
ant for the calculation of the bootstrap current density [14],
owever it is the generic cause of neoclassical effects. In particular

t is important for the plasma conductivity, therefore loop voltage
nd flux consumption. In this respect, let us note that it is good

o include the bootstrap current formulas [14] inside the system
odes, since fusion reactors will require a high bootstrap fraction.
t is even more important to include the neoclassical conductivity
s given by the similar formulas and to use the improved Spitzer
onductivity, also given as simple fits of accurate simulations in
14]. These formulas require the trapped fraction, which can be dif-
cult to calculate. We have recently extended a formula first given

n [15] to include the effect of triangularity [16]:

eff = 0.67(1 − 1.4ı|ı|)�, (33)

t = 1 − 1 − �eff
1 + 2

√
�eff

√
1 − �
1 + � , (34)

t = min(1, ft(Eq. (34)). (35)

The trapped fraction profiles for the equilibria studied in this
aper are shown in Fig. 18(a) versus triangularity. In Fig. 18(b) we
how the new formula, Eq. (34), versus the CHEASE ft profiles. They
ollow one another within 10% over a wide range, with cases almost
p to 1. It can even be used for 3D geometries with appropriate local
arameters and with not too pronounced 3D equilibrium effects
17].

. Conclusion

New formulas have been derived for the main geometric quanti-
ies, including the trapped fraction, as well as the relation between
lasma current and safety factor, to be used for example in 0D
ystem codes [1,2]. These formulas are valid over a wide range
f parameters, in particular at negative triangularity and various
spect ratio. Even at standard triangularity and q95 values, the new
ormulas are more accurate. They remove in particular the system-
tic error introduced by using the geometric parameters like� and ı
t the norm = 95% flux surface. Edge values are now used to describe
he last closed flux surface, being diverted or limited, up-down
ymmetric or not. Recent formulas were using appropriate edge

Lnewp = 2�a[1 + 0.55(� − 1)](1 + 0.08ı2)[1

Anewp = 2�R0(1 − 0.32ı�)Lnewp ,

Vnew = 2�R0(1 − 0.25ı�)Snew
�
,

Snew
�

= �a2�[1 + 0.52(w07 − 1)],

Inewp,MA = 4.1a2B0

R0q95
[1 + 1.2(� − 1) + 0.56(� −

qnew95 = 4.1a2B0

R0Ip,MA
[1 + 1.2(� − 1) + 0.56(� − 1

Bnewp = Inewp
5(Lnewp /2�)

,

ft = min

[
1 − 1 − �eff

1 + 2
√
�eff

√
1 − �
1 + � ; 1

]
.

arameters, however we have shown that the clear main depend-
nce of Ap/Lp and V/S� on (ı�) is better taken into account in the
ew formulas. Nevertheless even the cross-section area is not suf-
ciently well represented by S� =�a2�. A new parameter has been
Design 112 (2016) 633–645 641

introduced, w07, related to the distance along the major radius of
the flux surface at 70% of the maximum height. This enables to take
into account the squareness, for example, of the flux surface which
is present in diverted geometries as well, in particular near the X-
point. The new formulas are detailed in this paper and summarized
here for convenience:

(w07 − 1)],

1 + 0.09ı+ 0.16ı2)
1 + 0.45ı�
1 − 0.74�

[1 + 0.55(w07 − 1)],

+ 0.09ı+ 0.16ı2)
1 + 0.45ı�
1 − 0.74�

[1 + 0.55(w07 − 1)],

(36)
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Appendix A. Perimeter Lp

Accurate formulas for the perimeter of an ellipse have been
developed by Ramanujan [13]. The less complicated, yet very accu-
rate, formula is given by:

f (�)Ramanujan = 1.5(� + 1) − 0.5
√

(3� + 1)(� + 3). (A.1)

We have noticed that this relation is almost linear with � in the
typical tokamak range. We compare the previous function f(�) (Eq.
(8), with � instead of �95) and the new proposed formula:
Fig. 19. Previous form of f (�) =
√

(1 + �2)/2, Eq. (8) and new form
f(�)new = 0.45 + 0.55� divided by Ramanujan formula fkR given in Eq. (A.1).
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Fig. 20. Profiles for each equilibrium of Lp/(2�af(�)) with either (a) f(�)new , Eq. (A.2) or (b) f(�)Ramanujan , Eq. (A.1).
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Appendix D. Elongation and triangularity profiles
between 0.8 and 3.1. The previous form, Eq. (8), is less accurate.
ote that f(�) is simply the approximation of 2/� E(m = 1 −1/�2)
ith E(m) the complete elliptic integral of the second

ind.
We can compare with the values of Lp obtained by CHEASE.

ig. 20(a) shows Lp/(2�af(�)new) versus � and (b) shows
p/(2�af(�)Ramanujan). The � dependence is better extracted with Eq.
A.1), however the gain of 1–2% does not resolve the deviation due
o the squareness or to up-down asymmetry, leading to errors of
rder 4–6%, as discussed in the main text.

ppendix B. Test of Ip, q95 formula

We test the formula for q95, hence of Ip. For each term in Eq. (30),
he fit without the relevant term is compared to the CHEASE values
nd shown versus its dependent variable in Fig. B21, including the
elevant line. For example:

new,no�
95 = 4.1a2B0

R0Ip,MA
(1 + 0.09ı+ 0.16ı2)

1 + 0.45ı�
1 − 0.74�

× [1 + 0.55(w07 − 1)], (B.1)

s plotted versus �, including the line [1 + 1.2(�− 1) + 0.56(�− 1)2]
Fig. B21(a)). We see that the fits follow relatively well the data.
mprovements would require the knowledge of the current density
rofile, using li for example. However the fit is already accurate
ithin 10%. One should directly use a code like CHEASE [7] if a

etter accuracy is required, since it can calculate all the quantities
ery fast.

ppendix C. Relation between � and w07 using Eqs. (1) and
2)

Many codes actually use Eqs. (1) and (2) to define the plasma
oundary. Thus one can obtain the value of w07 relatively easily.
irst we show in Fig. C22(a) the relation between w07 and � for
hapes defined by Eqs. (1) and (2) and with 1 <� < 3, −0.8 < ı< 0.8
nd −0.5 < � < 0.65, the latter being the maximum limits for �. We

ee that the relation is not symmetric and saturates at small positive
alues of � because the shape is already very “square”. We also see
hat there is no dependence on �, as expected, and little depend-
nce on ı. The solid line is obtained from the analytical formula
presented here below. First we note from Eq. (2) that the angle �07
LFS

at which Z = 0.7 Zmax must satisfy:

�07
LFS + � sin 2�07

LFS = arcsin(0.7). (C.1)

Assuming �07
LFS = arcsin(0.7) + ˛ with ˛ small (note that ˛= 0 for

� = 0) and taking the LFS solution, we obtain:

�07
LFS ≈ arcsin(0.7) + 1 −

√
1 + 8�2

4�
. (C.2)

We check this result in Fig. C22(b) where we plot the sin() of the
left-hand side of Eq. (C.1), using Eq. (C.2), divided by 0.7, which
should yield 1. We see that it is accurate within 1.5%. Using this
solution we can evaluatew07 from Eqs. (1) and (24) and taking first
ı= 0. We obtain:

wanal,ı∼0
07 = cos[�07

LFS − � sin(2�07
LFS)]√

0.51
, (C.3)

with �07
LFS given in Eq. (C.2). This is the solid line shown in Fig. C22(a)

which follows very well the points for ı= 0 (stars) over essentially
the whole range of �. The other points are obtained with ı=±0.5
and ±0.8. Calculating again w07 from Eqs. (1) and (24) but taking
� = 0 this time, we obtain:

wanal07 (� = 0) ≈ 1 − 0.49
2
ı2. (C.4)

It yields a reduction with ı as seen from the points being below the
solid line in Fig. C22(a). We thus obtain the following full analytical
formula for w07 by multiplying Eqs (C.3) and (C.4):

wanal07 = cos[�07
LFS − � sin(2�07

LFS)]√
0.51

[
1 − 0.49

2
ı2

]
. (C.5)

We show again w07 versus � in Fig. C23(a) but zooming near � = 0
and adding the analytical line with ı=±0.5 and ±0.8. In Fig. C23(b)
we show w07 versus triangularity for various values of �. We see
that the analytical formula is very good except at high ı and high
positive �.
For completeness we show the � and ı profiles of the various
equilibria used in this study in Fig. D24. For a same edge � value, the
elongation on axis can be very different, in particular for negative
versus positive ı cases.
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Fig. B21. qchease95 /qnew,incomplete95 with qnew,incomplete95 from Eq. (30) without one of the term: (a) qchease95 /qnew,no�
95 versus �. (b) qchease95 /qnew,no ı

95 versus ı. (c) qchease95 /qnew,no�
95 versus �. (d)

qchease95 /qnew,no ı�
95 versus ı�. (e) qchease95 /qnew,now07

95 versus w07 (fits with ±5%).
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Fig. C22. (a) Symbols:w07 and � for shapes defined by Eqs. (1) and (2) and with 1 <� < 3, −0.8 < ı< 0.8 and −0.5 < � < 0.65. The solid line,wanal,ı∼0
07 from Eq. (C.3) using Eq. (C.2),

follows the ı= 0 points. (b) sin[�07
LFS

+ � sin 2�07
LFS

]/0.7 with �07
LFS

from Eq. (C.2).

Fig. C23. (a) Zoom of Fig. C22(a), adding dashed lines from wanal07 , Eq. (C.5), with ı=±0.5 and ±0.8. (b) w07 versus triangularity for various values of � between −0.5 and 0.6
by steps of 0.1. Symbols from actual plasma boundaries as in Fig. C22 and solid lines from Eq. (C.5) using Eq. (C.2).

aspec

R

Fig. D24. ı and � profiles versus “minor radius”, with � the local inverse
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