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1 | INTRODUCTION

| Aurelio Muttoni

Large efforts have been devoted in the past to understanding size effect in shear
failures of members without transverse reinforcement. Experimental works have
demonstrated that increasing the size reduces the nominal shear strength provided
that the failure mode is brittle. For large specimen sizes where a linear behavior
can be assumed between the opening of the shear cracks and the acting shear
force, the size effect agrees with linear-elastic fracture mechanics (LEFM). In this
case, the reduction of nominal shear strength is characterized with respect to the
specimen size by an asymptotic slope (in double-log scale) of —1/2. However,
such a linear relationship between crack widths and applied shear force is not
present in most reinforced concrete structures, where the response is characterized
by a nonlinear behavior at a cracked stage. In these cases, the influence of size
effect shall be milder, and the slope (in double-log scale) characterizing it shall be
lower than —1/2. In this paper, the influence of size effect on structures character-
ized by internal redundancy (continuous one-way members and slabs in case of
punching shear with a nonlinear response) is investigated in the frame of the criti-
cal shear crack theory. The theory predicts the same influence as LEFM with
respect to size effect when a linear behavior can be assumed, but it yields consist-
ently milder influence of size effect for structurally redundant elements with a
nonlinear response.

KEYWORDS

concrete structures, critical shear crack theory, punching shear strength, shear
strength, size effect

For cracked beams failing in shear, a large number of
tests has been performed in the past with varying sizes (typ-

The influence of size effect in shear and punching shear
failures has been a controversial topic of research in the last
decades. Although its influence has been acknowledged
experimentally and theoretically, its significance and impli-
cations for design do not yet find a consensus. For instance,
with respect to shear design in codes, some do not account
for this phenomenon (as ACI 318-14"), others propose
empirical factors (as Eurocode 2%) and some calculate it on
the basis of mechanical models (as MC2010°%).

ically from 10 cm up to 4.0 m*). The majority of these tests
correspond to simply supported beams subjected to concen-
trated loads (under three- or four-point bending conditions,
refer to Figure la). The results of these tests have shown
that the influence of size effect is variable, with almost neg-
ligible influence when a strength or yield criterion governs
(typically associated to low member sizes), but quite signifi-
cant in case of a sudden and brittle crack propagation (typi-
cally associated with large member sizes).* For brittle
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FIGURE 1

(d)

Shear and punching shear failures: (a) classical academic (statically determinate) beam shear test; (b) corresponding size-effect law;

(c) redundant structure in the transversal direction (cut-and-cover tunnel); (d) redundant structure in the longitudinal direction (bridge deck slab); (e) slab

sector; and (f ) continuous flat slab

failures with significant size-effect influence, the behavior
of test specimens is reasonably well approximated by
assuming a linear relationship between the acting (shear)
force and the crack widths (see Reference 5 experimental
evidence will be discussed in this paper). By using linear-
elastic fracture mechanics (LEFM), the influence of size
effect on the strength of asymptotically large specimens can
be calculated,® corresponding to a slope (in double-log
scale) of —1/2, refer to Figure 1b (plotted for normalized
values for the size and shear strength parameters, values for
such normalization will be introduced in the next section).
The transition between the two regimes (controlled by a
yield criterion or controlled by LEFM) can be characterized
by a smooth curve that is normally referred to as the size-

effect law (according to BaZant et al®). The validity of this
slope for statically determinate members can also be demon-
strated by other means as for instance the critical shear
crack theory (CSCT,’ a consistent study on this topic can be
referred elsewhere’).

As it will be shown in this paper, the observed size
effect for statically determinate beams is not necessarily
representative of actual members failing in shear without
transverse reinforcement. These are mostly slabs, with the
capacity to act as two-way members and in many cases
with a redundant static system, refer to Figure lc,d. For
these members, redistribution of internal forces occur after
cracking and reinforcement yielding, and the linearity
between acting shear forces and crack widths can be
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considered as no longer applicable (neither the size effect
influence predicted by LEFM). Theoretically, the slope
shall be milder, with an influence depending on the devia-
tion with respect to a linear behavior. Despite this fact, the
influence of size effect on shear design formulas has been
adapted in several cases from that of statically determinate
members.

For punching shear failures, the influence of the non-
linear response on the size effect is even more significant
as two-way slabs are internally redundant members with
significant internal force redistributions (in radial and tan-
gential directions and between hogging and sagging
regions,® Figure 1f) and where the effects of tension stiff-
ening are very marked.” Even for slab sectors (Figure le),
the response (shear force-crack width) is notably nonlin-
ear due to these aspects (tension-stiffening and radial-
tangential moment redistribution due to cracking and
yielding”).

Previous investigations based on analysis of experimen-
tal results have already shown that the asymptotic slope for
size effect in punching failures governed by brittle failures
is milder than —1/2 (expressed in double-log scale), indicat-
ing that the behavior deviates from that of LEFM.'® This
phenomenon can be demonstrated theoretically by using the
CSCT*!"" (ground of current MC2010 punching provi-
sionsu’13), which yields an influence of size effect on the
punching strength governed by a slope closer to —1/3.'
This value is also in agreement to other theoretical
approaches for punching shear.'”

This paper reviews these aspects by identifying and jus-
tifying based on experimental evidence the cases where the
behavior of brittle failures in shear can be approximated by
LEFM and the cases where the actual behavior deviates
from it. Based on the theoretical frame of the CSCT, suita-
ble values for the influence of size effect are derived in
terms of the slope describing brittle failures (expressed in
double-log scale). On that basis, recommendations are pro-
vided for design.

2 | SIZE EFFECT IN SHEAR FAILURES OF
ONE-WAY SLABS WITHOUT TRANSVERSE
REINFORCEMENT

The influence of size effect on the shear strength of one-
way slabs and beams without transverse reinforcement is
investigated in this section both for statically determinate
(as for instance simply supported beams, as usually tested
in laboratory) and redundant members (as continuous one-
way members, which are more representative of practical
cases). The aim of this section is to highlight their differ-
ences and expected consequences with reference to size
effect. To that purpose, the theoretical frame of the CSCT is
used to analyze the shear strength and to perform the
comparisons.

2.1 | The capacity of cracked concrete to transfer
shear forces

According to the CSCT, the capacity of cracked concrete to
transfer shear forces is characterized by a failure criterion
accounting for the various potential shear-transfer actions’
(namely aggregate interlock, residual tensile strength of con-
crete, dowelling action, and inclination of compression
chord). The failure criterion results from integration of the
stresses developed at the critical shear crack accounting for
its shape and kinematics at failure. It can be demonstrated
in References 5,7 that the shear failure criterion is in fact
dependent on the opening (w) and roughness of the critical
shear crack leading to failure. In addition, it can be demon-
strated that the capacity of cracked concrete to transfer shear
forces decreases for increasing crack openings or decreasing
crack roughness.

For practical purposes, the failure criterion can be
defined by a single function where it is assumed that the
critical shear crack width is proportional to a reference
strain times the effective depth of the member (w x € - d 5)
leading to the following failure criterion:

Vg 1 1
b-df. 3 1+120;~7‘;'

(STunits [MPa, mm]), (1)

where b refers to the width of the member, d to its effective
depth, f. to the compressive strength of concrete measured
in cylinder, and dg to the equivalent crack roughness
(dqg = dy + 16 mm < 40 mm, where d, refers to the maxi-
mum aggregate size). With respect to the reference strain
(e), it is considered at a distance equal to 0.6d of the com-
pression face and at d/2 of the applied load (location of the
control section, extended considerations can be consulted
elsewhere®). It can be noted that in the previous expression,
the crack width accounts both for the size (d) and for the
strain of the member (¢), thus coupling both phenomena.

2.2 | Statically determinate members—Size effect in
shear for a linear structural response

The shear strength and the influence of size in statically
determinate members (for instance simply supported beams
and one-way slabs) has been previously investigated in
detail by means of the CSCT.” The strength can be calcu-
lated by intersecting the failure criterion by the law describ-
ing the relationship between the acting shear force at the
control section and the associated crack openings.

For statically determinate members, it can be accepted
that the reference strain (¢) and thus the opening of the cracks
(w) are linearly dependent on the acting bending moment.’
This assumption is grounded on the reduction and eventual
loss of reinforcement-to-concrete bond stresses due to the
development of horizontal or inclined cracks at the level of
the reinforcement’ limiting the tension-stiffening effects. The
development of these cracks (eventually leading to a
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delamination crack) is investigated in detail by Cavagnis
et al'® (named as type “D” cracks). This fact is shown in
Figure 2 showing the results of a specimen (SC70) tested and
instrumented consistently with the results presented in Refer-
ence 16. In that figure, the horizontal opening of the crack at
point “A” is investigated. This point is located at the same
depth as that considered by the CSCT as a reference fiber
(where flexural cracks have already merged). Figure 2b—d
shows the evolution of the crack pattern as well as of the hor-
izontal opening of the crack. At early cracking stages
(Figure 2b), the behavior is not linear with a rapid increase of
the crack opening. Thereafter (Figure 2c), the relationship
between the crack widths and the acting shear force is rather
linear (with proportional increases for both). This behavior
continues up to near failure (Figure 2d) when, in the last load
increments (Figure 2e), the linearity is again lost.

a =3850 mm

On the basis of these considerations, a linear elastic
cracked behavior can be reasonably assumed. In this case,
for the depth of the reference fiber, the strains can be
approximated by the following expression (neglecting
tension-stiffening effects in the sectional analysis, Figure 3):

e M 0.6d—c
" pbd-Efd—c/3) d—c

(2)

For a simply supported beam subjected to a concen-
trated load, the bending moment at the control
section (located at d/2 from the load, see Figure 3b) results
M = Vp(a — df2) so that:

Vr(a—=d/2) 0.6d—c

T pbdE(d-c/3) d-c G)
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FIGURE 2 Analysis of the response of a simply supported beam: (a) geometry, support and loading conditions of specimen SC70; and horizontal crack

opening at point A (uA) for: (b) an early cracking stage; (c) stabilized cracking and development of type D cracks; (d) near failure; and (e) failure



FERNANDEZ RUIZ AND MUTTONI

(a) (b)
% control section
b\ ’ — i ‘
. - TN\
reinforcement yielding — ESEEEEES S
L dr
M,
failure criterion 3
- z 0.6d
% reference fibre
(©
v,
log < S ) 0
04 Ry LEFM limit analysis
R S R el ___ K

FIGURE 3  Size effect in shear failures:
(a) failure criterion, flexural behavior and -0.8 2 b
failure load according to the critical shear —~1
crack theory (CSCT); (b) control section and -1.2 "
reference strain; and (c) size-effect law CSCT size-effect law 7
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where p refers to the reinforcement ratio, E, to the modulus
of elasticity of the reinforcement, and ¢ refers to the depth
of the compression zone’:

Es
c=p-dE—‘

and with E_ referring to the modulus of elasticity of
concrete.

By introducing the value of & of Equation (2) into
Equation (1), the shear resistance (V) can be determined,
which results in the following expression’:

14+ VTF4d,
6d, ’

VR _
N
where d,, is a parameter accounting for size and strain
effects.” It can be noted that this expression is consistent
with the size-effect law for shear failures by BaZant.® The
validity of the expression can in fact be assessed by means
of test results as most tests of beams in shear correspond to
this support and loading conditions, see Figure 3c. For fail-
ures governed by limit analysis (d,, — 0), no size effect is
observed whereas for large sizes (d, — ), the slope (in
double-log scale) of the strength corresponds asymptotically
to —1/2 in accordance with the LEFM (Figure 3c).

(5)

2.3 | Size effect in shear for redundant members

Despite the fact that the majority of shear tests are per-
formed in statically determinate members, actual struc-
tures where shear strength governs are in many cases
redundant. Structural redundancy may be considered both

in the transversal direction (Figure 1c) as well as in the
longitudinal direction when concentrated loads are acting
(Figure 1d). Due to structural redundancy, redistributions
of internal shear forces are possible, which may deviate
the relationship between the acting shear force and the
crack openings at the shear-critical region from a
linear one.

The response of a redundant structure is for instance
shown in Figure 4. It corresponds to a continuous one-way
slab subjected to distributed loading, where the response of
such element is investigated at d/2 (control section) from
the support region (Figure 4a). Some phases can be differ-
entiated, corresponding first to an uncracked behavior, fol-
lowed by cracking near the support, cracking at mid-span
and eventually yielding of the reinforcement of both
regions. The evolution of the bending moments at mid-span
and support (Figure 4b) shows that the response is not lin-
ear, deviating due to cracking and yielding occurring at dif-
ferent load levels at mid-span and support. This influences
the response of the element in terms of the shear force-to-
crack opening relationship, leading to a nonlinear behavior.
The shear strength can be determined by calculating the ref-
erence strain by means of Equation (2) and by accounting
for the actual values of the bending moment and shear force
(Figure 4b). In so doing, a nonlinear response is obtained
with a stiffer behavior than that corresponding to a linear
prediction (two calculated cases are shown in Figure 4c). If
such analysis is performed for geometrically identical mem-
bers but scaled, one can derive the size-effect law. Two
cases are for instance presented in Figure 4d, one corre-
sponding to a moderate flexural reinforcement ratio (pp,, =
0.5%) and another to a high flexural reinforcement ratio
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FIGURE 4 Influence of size effect on a redundant member: (a) case investigated; (b) evolution of bending moments on the support and mid-span sections;

(c) load-reference strain response; and (d) calculated size effect as a function of the flexural reinforcement ratio plotted in double-log scale (red curve:

phog = 1%, psag = 0.5%; blue curve: phog = 0.5%, psag = 0.3%)

(Prog = 1.0%). From Figure 4d, one can observe that the
slope of the size-effect law tends to zero for low sizes (gov-
erned by the strength criterion) and that for large size mem-
bers it tends to a value of approximately —1/3. This latter
slope is milder than that predicted by LEFM (—1/2) due to
the nonlinear response exhibited by the members. The fact
that the slope is milder than that of LEFM indicates that the
assumption on the linear behavior for a redundant structure
deviates from its actual behavior and leads to safe predic-
tions in terms of the shear strength.

A similar consideration can be performed with respect
to structures that are redundant in the transversal direction
(due to a two-way slab behavior, refer for instance to the
deck slab subjected to a concentrated action shown in
Figure 1d). Detailed measurements performed by Natario
et al'” have shown that strong redistributions in the bending
and shear fields occur in the region where shear failure
occurs, with load being transferred to less cracked regions.
Also, crack openings are shown to have a highly nonlinear
response due to the progression of the critical shear crack
up to failure. These observations show that the structural
redundancy due to a two-way slab behavior is also a poten-
tial source of loss of linear response and shall thus mitigate
size-effect influence (corresponding to milder slopes of the
size-effect law for large sizes). More details on the behavior
of two-way slabs will be presented in the following
section with reference to the punching shear strength of
slab—column connections.

3 | SIZE AND STRAIN EFFECTS IN
PUNCHING FAILURES OF SLAB-COLUMN
CONNECTIONS

3.1 | Nonlinear response of two-way slabs and shear
strength

The CSCT can also be used as a consistent frame for investi-
gating the punching shear strength of two-way slabs.” With
reference to the opening of the critical shear crack, it is
assumed to be correlated to the slab rotation (y, see Figure 5b)
times the effective depth of the member: w o< y - d. This term
accounts again for both the size and strain level of the mem-
ber. Similarly to the shear strength of one-way slabs, the fail-
ure criterion can be described according to Muttoni’ by
a hyperbolic relationship:

Ve 3/4
bo-dv/fe 1“55—;’

(STunits [MPa, mm]), (6)

where by refers to the length of the control perimeter
(located at d/2 of the edge of the supported area). As for
shear failures, the shear strength decreases for increasing
crack openings (or decreasing crack roughness d,,).

The shear strength is calculated (in a similar manner as
for shear failures) by intersecting the punching failure crite-
rion with the load—rotation response of the slab. With respect
to the latter, the behavior is markedly nonlinear due to the
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FIGURE 5 Realistic behavior of a slab:
(a) moment (m)—curvature (1/r) diagram of a

slab element with tension-stiffening effects; and clastic
(b) load—rotation relationship of a slab—column )

connection with different regimes (calculated
assuming a quadri-linear moment—curvature
diagram®)

distribution of bending moments in the slab (in the radial and
tangential directions’) as well as to the moment—curvature
response of a reinforced concrete section (simplified as a
quadri-linear response in Figure 5a).

A detailed analysis and derivation of the load—rotation
response of slab—column connections has been thoroughly
presented by Muttoni® (extended considerations accounting
for the continuity of flat slabs have also been developed by
Einpaul et al®'®). According to these works, the load—
rotation relationship (Figure 5b) comprises a number of
regimes:

e First, the slab behaves in an uncracked regime (linear-
elastic regime (1) in Figure 5b)

e Second, cracking develops in the member with all rein-
forcements in the elastic regime ((2) in Figure 5b).

e Third, local yielding of the reinforcement occurs in the
vicinity of the column ((3) in Figure 5b) but still a part
of the reinforcement remains elastic.

e Fourth, all reinforcement is yielded, and the slab eventu-
ally reaches the flexural strength ((4) in Figure 5b)

The complete load-rotation curve describing the
response of the member can be observed to be highly non-
linear, with a progressive loss of stiffness as load increases.
The response is in fact to a large extent controlled by
tension-stiffening effects. In the radial direction, tension
stiffening can near failure be reduced due to a delamination
crack as for one-way slabs. Nevertheless, in the tangential
direction, tension stiffening is very relevant as it affects the
whole slab surface and develops until failure. In actual (con-
tinuous) flat slabs, the response of the member (character-
ized by its load-rotation curve) is also influenced by the
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reinforcement at mid-span and the moment redistributions
that occur.®'8

The significance of the tension-stiffening effects can be
observed in Figure 6 with reference to two tests performed
by Guandalini et al'” on geometrically identical specimens
scaled approximately 1:2. Although both specimens failed
in punching, the smaller exhibited a behavior with a signifi-
cantly larger deformation capacity, failing in regime
(3) (almost beginning of regime (4)). The thicker specimen,
however, showed a rather brittle behavior and failed in the
transition between regimes (2) and (3). Both specimens

0.8
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p=0.33%
d =456 mm

Test PG-10
p=0.33%
d=210 mm

[VMPa]

0.4+

v
byd\Te

failure criterion PG10
d =210 mm

02+

failure criterion PG3, d = 456 mm
I I

0.0 -
0.000 0.020 0.040 0.060

w[-]

FIGURE 6 Experimental response of thick and thin slabs for
geometrically scaled specimens (tests PG-3 and PG-10 from Reference 19)
and comparison to predicted flexural behavior and failure criterion
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showed a markedly nonlinear behavior and their response
was characterized by the tension-stiffening effects, closely
following the theoretical prediction described in Reference
9 (refer to Figure 6). It is also interesting to observe that the
size effect does not only influence the strength and deforma-
tion capacity, but even the failure mode.

As a consequence of the nonlinear behavior of slabs, it
can be stated that the size effect cannot be described for
large specimen sizes by the LEFM (as for simply supported
beams without transverse reinforcement failing in shear).
For these cases, the dependence of the strength with respect
to the size cannot correspond to a slope —1/2 (in double-log
scale), but shall be milder (see also the next section).

3.2 | Size effect in punching failures according to
the CSCT

The CSCT can be used as previously explained in order to
predict the influence of size on the punching shear strength.
For instance, Figure 7a plots the predictions of this theory
compared to the experimental programme of Guandalini
et al'” (geometrically identical specimens but scaled with
d = 100456 mm). The influence of size effect is observed
to be variable consistently with the size-effect law. For low
sizes, the size-effect influence is limited as the behavior is
mostly controlled by the strength criterion. For large speci-
men sizes, the influence of size becomes more significant.
With respect to the slope, the tension-stiffening effects and
the nonlinearity of the load-rotation relationship do not
yield to the asymptotic slope predicted by LEFM (—1/2 in
double-log scale) but to a milder value (approximately —1/3
in double-log scale), refer to Figure 7a. The slope depends
in addition on the amount of flexural reinforcement, as this
parameter influences the plastic deformations at failure and
different regimes of the load-rotation curve may govern
(refer to Figure 5b).

The significant role of tension stiffening in this response
can be observed in Figure 7b, where the size effect is calcu-
lated assuming no contribution of concrete in tension lead-
ing thus to a linear response of the slab before yielding of
the reinforcement. In this case, the slope is steeper, corre-
sponding (exactly) to —1/2 in agreement to the LEFM pre-
diction (the mathematical derivation of this value can be
consulted elsewhere'®). This confirms that the CSCT is con-
sistent to LEFM provided that the response of the member
is linear. However, as previously shown (refer to Figure 6
for instance), the actual behavior of two-way slabs is not
linear and thus the size-effect influence has to be milder
than that of LEFM.

The value —1/3 obtained for the influence of size in
punching failures is interestingly similar to the one previ-
ously calculated for redundant one-way slabs, showing the
significance of the structural response and tension stiffening
on this phenomenon.

4 | IMPLICATIONS FOR DESIGN—
APPROACH OF FIB MC2010

fib MC2010* punching shear provisions are based on the
CSCT" by incorporating the so-called levels-of-
approximation (LoA) approach.?’ To that aim, a simplified
load-rotation relationship is used (based on a number of
assumptions justified in Reference'?) leading to the follow-
ing expression:

3/2
rsfy mg
=15=-:=(— 7
v dEA (mR> ’ ( )

where r, refers to the distance from the center of the column
to the line of contraflexure of bending moments, f, to the
yield strength of the reinforcement, E; to its modulus of
elasticity, m, to the average bending moment acting in the
support strip of the slab, and mg to the average flexural
strength in the support strip of the slab.

The parabola of Equation (7) approximates with a single
expression the nonlinear response of an actual slab (see
Figure 7c-right) enhancing the easiness of use of the
approach. The
(Equation (6)) are also slightly adapted to account for the
scatter of test results'? and in order to provide a suitable
level of safety for design.

Design can be performed following various LoA to esti-
mate the punching strength of a slab—column connection.
This allows performing simple and safe designs for non-
critical members, but the accuracy can be refined upon
necessity by a more accurate evaluation of the physical
parameters implied.

The most simple LoA proposed in MC2010 (LoA 1) is
aimed at verifying the dimensions of the slab—column con-
nection. This LoA assumes yielding of the flexural rein-
forcement prior to punching (m; = mg) so to ensure a
ductile behavior of the connection. Additionally, this con-
sideration provides a safe estimate of the actual strength
(as connections may be over-reinforced in bending to
increase their punching strength).

For LoA 1II and higher, the value of m; is to be calcu-
lated as a function of the acting shear force. This allows
determining the punching strength in case the reinforcement
in the support strip is not fully yielded and thus accounting
for the potential gain in punching strength when flexural
reinforcement is not fully yielded (corresponding to lower
crack widths). Figure 7c plots the predicted punching
strength by using LoA II for the same cases as previously
investigated with the CSCT (Figure 7a). The calculated size
effect is observed similar to the one derived from the CSCT
accounting for a more realistic load—rotation relationship
(Figure 7a), with an slope in double-log scale of approxi-
mately —1/3 for large members (asymptotic value of —1/
2.5). This slope is again milder than that of LEFM and con-
sistent with the detailed approach of the CSCT.

coefficients of the failure criterion
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Predicted size effect by the critical shear crack theory (CSCT) and comparison to the test series presented in Reference 19 plotted in double-log

scale (tests PG-2b and PG-9 for p = 0.24%; tests PG-3 and PG-10 for p = 0.33%, tests PG-7 and PG-19 for p = 0.75% and PG-1 and PG-6 for p = 1.50%):
(a) accounting for tension-stiffening effects; (b) without consideration of tension-stiffening effects; and (c) according to fib MC2010

It is also interesting to observe that in Figure 7c, a
dashed line is plotted indicating the condition at which all
flexural reinforcement yields at punching failure (regime
(4) governing). This dashed line represents actually the con-
dition of LoA I, as slabs designed complying with LoA I
ensure reaching their flexural capacity before failing in
punching. Size effect is much stronger in this case (slope
—1/1) as, for increasing sizes, the nominal punching shear
strength decreases (refer for instance to Figure 6) and thus
to ensure full yielding of the flexural reinforcement the rein-
forcement ratio of the slab shall be reduced accordingly.
Consequently, slabs designed using LoA I cannot be inves-
tigated for a size effect, but for the influence of size on the
transition from failures governed by the shear capacity to
failures governed by bending capacity (as not only the size
but also the flexural reinforcement ratio varies, and they
present a combined size and strain effect).

5 | CONCLUSIONS

This paper investigates the influence of size effect for fail-
ures in shear and punching shear. The investigation high-
lights the differences between statically determinate and
redundant members, accounting for the loss of linearity
between the acting shear force and crack widths in the lat-
ter. Its main conclusions are summarized below:

1. The significance of size effect depends not only upon
the size of the member (low significance for low sizes
and high significance for large sizes), but also on the
capacity of a structure to redistribute internal forces due
to cracking and reinforcement yielding.

2. Classical tests on statically determinate beams provide a
size-effect influence consistent to LEFM for asymptoti-
cally large sizes (slope of —1/2 in double-log scale).
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However, size effect shall deviate from LEFM in actual
(mostly redundant) structures as the shear action and
shear resistance (proportional to crack widths and thus
to bending moments) are no longer proportional.

It has been observed experimentally that size effect in
punching of slab—column connections (which are inter-
nally redundant members) is milder than that predicted
by LEFM. This is in agreement to the previous consid-
eration and can be theoretically explained by the CSCT.
According to the CSCT, the predicted size-effect slope
for redundant members is closer to —1/3 (instead of —1/
2). This indicates that design on the basis of size-effect
factors calibrated for shear failures in statically determi-
nate members may be too safe for actual structures.

5. fib MC2010 design provisions for punching already

account for a nonlinear behavior in the flexural response
of a slab and the resulting slope for the size effect (in -
double-log scale) is similar to —1/3, in consistency with
the CSCT and the previous theoretical considerations.
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NOTATION

E- MODULUS OF ELASTICITY OF CONCRETE

E;  modulus of elasticity of reinforcement

EI, uncracked flexural stiffness

M  bending moment

14 shear force

Vkr  shear strength

a shear span

b width of beam

by  control perimeter length

c thickness of compression zone

d effective depth (distance from the centroid of the
flexural reinforcement to the outermost compressed
fiber)

d normalized effective depth

dge  equivalent crack roughness

d,  maximum aggregate size

d,  dimension parameter

fe concrete compressive strength measured in cylinder

5 yield strength of the reinforcement steel

m unitary bending moment

m,, unitary bending moment at cracking

my  average bending moment in the support strip of
a slab

my  average flexural strength in the support strip of a slab

v normalized shear force

q distributed load

r radius of curvature

SEM§<§

distance from center of column to the line of contra-
flexure of bending moments

horizontal opening of crack at point A

unitary shear force

crack width

reference strain

reinforcement ratio

rotation

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

American Concrete Institute Committee 318. Building Code Requirements
for Structural Concrete ACI 318-14. Farmington Hills, MI: American Con-
crete Institute; 2014:519.

. CEN European Committee for Standardization. Eurocode 2. Design of Con-

crete Structures—General Rules and Rules for Buildings, EN 1992-1-1.
Brussels, Belgium; 2004:225.

. Fédération internationale du béton. fib Model Code for Concrete Structures

2010. Germany: Ernst & Sohn; 2013:434.

. Collins MP, Bentz EC, Quach PT, Proestos GT. The challenge of pre-

dicting the shear slabs.  Concr Int.

2015;37(11):29-37.

strength of very thick

. Muttoni A, Fernandez Ruiz M. Shear strength of members without trans-

verse reinforcement as function of critical shear crack width. ACI Struct J.
2008;105(2):163-172.

. Bazant ZP, Kim J-K. Size effect in shear failure of longitudinally reinforced

beams. ACI J Proc. 1984;81(5):456-468.

. Fernandez Ruiz M, Muttoni A, Sagaseta J. Shear strength of concrete

members without transverse reinforcement: a mechanical approach to

consistently account for size and strain effects. Eng Struct.

2015;99:360-372.

. Einpaul J, Fernandez Ruiz M, Muttoni A. Influence of moment redistribu-

tion and compressive membrane action on punching strength of flat slabs.
Eng Struct. 2015;86:43-57.

. Muttoni A. Punching shear strength of reinforced concrete slabs without

transverse reinforcement. ACI Struct J. 2008;105(4):440-450.

Donmez A, Bazant ZP. Size Effect on Punching Shear Strength of Rein-
forced Concrete Slabs Without and With Shear Reinforcement, Report
No. 15-12/936s, Department of Civil and Environmental Engineering,
Northwestern University, IL; 2016, 23.

Muttoni A, Ferndndez Ruiz M. The critical shear crack theory for punching
design: from a mechanical model to closed-form design expressions, Joint
ACI+ib International Symposium “Punching Shear of Structural Concrete
Slabs”, Philadelphia, PA, October 23-27, 2016.

Muttoni A, Fernandez Ruiz M. MC2010: the critical shear crack theory as a
mechanical model for punching shear design and its application to code
provisions. In: fib Federation for Structural Concrete, Bulletin 57;
2010:31-60.

Muttoni A, Ferndndez Ruiz M, Bentz E, Foster SJ, Sigrist V. Background
to the Model Code 2010 shear provisions—part II punching shear. Struct
Concr. 2013;14(3):195-203.

Fernandez Ruiz M, Muttoni A. Size effect on punching shear strength: dif-
ferences and analogies with shear in one-way slabs. In: fib Federation for
Structural Concrete, Bulletin 81; 2017:59-72.

Broms CE. Tangential strain theory for punching failure of flat slabs. ACI
Struct J. 2016;113(1):95-104.

Cavagnis F, Fernandez Ruiz M, Muttoni A. Shear failures in reinforced
concrete members without transverse reinforcement: a critical analysis on
the basis of test results. Eng Struct. 2015;103:157-173.

Natario F, Fernandez Ruiz M, Muttoni A. Shear strength of RC slabs under
concentrated loads near linear supports. Eng Struct. 2014;76:10-23.

Einpaul J, Ospina CE, Fernandez Ruiz M, Muttoni A. Punching shear
capacity of continuous slabs. ACI Struct J. 2016;113(4):861-872.
Guandalini S, Burdet O, Muttoni A. Punching tests of slabs with low rein-
forcement ratios. ACI Struct J. 2009;106(1):87-95.

Muttoni A, Fernindez Ruiz M. The levels-of-approximation approach in
MC 2010: applications to punching shear provisions. Struct Concr.
2012;13(1):32-41.



FERNANDEZ RUIZ AND MUTTONI é b 11

AUTHOR'S BIOGRAPHIES

How to cite this article: Ferniandez Ruiz M,
Miguel Fernandez Ruiz PhD Muttoni A. Size effect in shear and punching shear fail-
Senior Lecturer ures of concrete members without transverse reinforce-
Ecole Polytechnique Fédérale de ment: Differences between statically determinate
Lausanne members and redundant structures. Structural Concrete.
Station 18, CH-1015 Lausanne 2017;1-11. https://doi.org/10.1002/suco.201700059
Switzerland
miguel.fernandezruiz @epfl.ch

Aurelio Muttoni PhD,

Professor

Ecole Polytechnique Fédérale de
Lausanne

Station 18, CH-1015 Lausanne
Switzerland aurelio.muttoni @epfl.ch



https://doi.org/10.1002/suco.201700059

	 Size effect in shear and punching shear failures of concrete members without transverse reinforcement: Differences between...
	1  INTRODUCTION
	2  SIZE EFFECT IN SHEAR FAILURES OF ONE-WAY SLABS WITHOUT TRANSVERSE REINFORCEMENT
	2.1  The capacity of cracked concrete to transfer shear forces
	2.2  Statically determinate members-Size effect in shear for a linear structural response
	2.3  Size effect in shear for redundant members

	3  SIZE AND STRAIN EFFECTS IN PUNCHING FAILURES OF SLAB-COLUMN CONNECTIONS
	3.1  Nonlinear response of two-way slabs and shear strength
	3.2  Size effect in punching failures according to the CSCT

	4  IMPLICATIONS FOR DESIGN-APPROACH OF fib MC2010
	5  CONCLUSIONS
	5  ACKNOWLEDGMENTS
	  References


