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A B S T R A C T

In this paper, a mechanical model consistent with the main assumptions of the Critical Shear Crack Theory
(CSCT) is proposed for shear design of slender concrete members without shear reinforcement. To that aim, the
shear force that can be transferred through the critical shear crack by aggregate interlock, residual tensile
strength and dowelling action as well as due to the inclination of the compression chord are calculated by
integration of fundamental constitutive laws accounting for the critical shear crack opening and kinematics at
failure. The pertinence of the assumptions is validated through comparisons to detailed test measurements to
assess their validity. The model allows predicting the failure load, the deformation capacity and the location of
the critical shear crack leading to failure. The results are checked against large datasets and the model is finally
used to discuss on the influence of the various parameters on the governing shear-transfer actions. The results are
eventually used to propose improvements on the CSCT failure criterion for shear, relating the shear strength and
its associated deformation capacity.

1. Introduction

The shear strength of reinforced concrete beams without transverse
reinforcement has been extensively investigated in the past and many
mechanical approaches have been proposed to address this issue [1–7].
Yet, these models present significant discrepancies on the mechanical
parameters and shear-transfer actions governing failure and this is still
a topic of controversy and open discussion. As established since long,
there are various potential shear-carrying actions that allow transfer-
ring shear forces in cracked concrete members. They are usually clas-
sified as beam shear-transfer actions (where the force in tension chord
varies)—cantilever action (Fig. 1a), residual tensile strength of concrete
(Fig. 1b), dowelling action (Fig. 1c) aggregate interlock (Fig. 1d), which
may also be combined (Fig. 1e)—and the arching action (where the
force in the tension tie remains constant, Fig. 1f). A complete descrip-
tion of each of them can be found elsewhere [8].

One mechanical approach which considers the contribution of all
potential shear-carrying actions is the Critical Shear Crack Theory
(CSCT) proposed by Muttoni et al. [3]. This theory is based on the as-
sumption that the shear strength of slender members without stirrups is
governed by the development of a critical shear crack that limits the
strength of the theoretical inclined compression strut carrying shear.
According to this theory, both the shear strength and the deformation
capacity of a member are related through a failure criterion (Fig. 1g),

with lower strengths associated to larger deformation capacities (and
thus larger crack widths).

A detailed description of the CSCT and of the development of the
critical shear crack can be found elsewhere [8–11]. These investigations
have shown that rather different crack patterns may develop for similar
reinforced concrete members and that the contribution of each-shear
transfer action may significantly vary during loading (being this
strongly dependent on the shape, location and kinematics of the critical
shear crack).

A theoretical description of the main physical parameters governing
the shear capacity can be found in Fernández Ruiz et al. [8]. This work
shows, by means of an analytical approach based on simple constitutive
laws, that all shear-transfer actions depend eventually on the same
mechanical parameters (concrete compressive strength, effective depth,
maximum aggregate size and crack width). These results confirmed the
validity of the failure criterion of the CSCT relating the shear strength
and the deformation capacity at failure (Fig. 1g) in terms of its shape
and governing parameters. Since that work [8], a number of detailed
testing programmes using digital image correlation (DIC) have been
performed [10–12]. These programmes provide very detailed in-
formation on the development of the critical shear crack and on the
associated capacity of each shear-transfer action. In this paper, this new
experimental data is used in combination with refined constitutive laws
to perform detailed calculations on the contribution of the various
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potential shear-transfer actions during the process of loading and at
failure. As a result, predictions can be made not only on the strength
and deformation capacity, but also on the shape and location of the
critical shear crack as well as on the amount of the shear carried by
each shear-transfer action. The results are compared to actual tests to
show the consistency of the approach and to discuss on the role and
significance of the various shear-transfer actions. On that basis, im-
provements on the CSCT failure criterion will be presented and dis-
cussed.

2. Load-critical shear crack opening relationship

One of the main assumptions of the CSCT, according to Muttoni
et al. [3], is that the opening w of the critical shear crack can be as-
sumed to be proportional to the product of the longitudinal strain in a
control section times the effective depth of the member (w∝ ɛ·d, where
the strain ɛ can be calculated according to a cracked sectional analysis).
The validity of this assumption has been confirmed by recent experi-
mental investigations [11] on the basis of DIC measurements. Ac-
cording to these measurements, although cracks at narrow spacing may
develop at the level of the longitudinal reinforcement, they merge
thereafter and the sum of all cracks tributary to the critical shear crack
yields an approximately linear profile of the horizontal component of
the crack width (refer to Fig. 2). This tributary length lB has been ex-
perimentally observed to be fairly constant at peak load [11] and can be
approximated by the expression:

= −l d cB (1)

(average of measured-to-calculated values equal to 1.01 with a Coeffi-
cient of Variation of 7% for 11 specimens presented in [11]), where c is
the depth of the compression zone, calculated by assuming a linear
response of concrete in compression and neglecting concrete in tension:
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Thus, considering that the reinforcement strains can be calculated as
(linear profile of compression stresses):
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and assuming that the horizontal crack opening at the level of the re-
inforcement is proportional to the product of the tributary length lB
times the strain at the level of the longitudinal reinforcement
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= −
−

u M
A E

d c
d c·

·
/3A

F

s s (4)

In simply supported elements subjected to point load, for instance,
=M V a·F F F and thus Eq. (4) yields:
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where aF refers the moment-to-shear ratio of the investigated section,
corresponding to the distance xF of the section to the support in this
case (the so called shear span, see Fig. 3a).

It has to be noted that Eq. (3) is an approximation as the con-
tribution of the internal forces acting on the critical shear crack (refer to
Fig. 3d) to the moment MF at a section located at crack tip are neglected

Fig. 1. Shear-transfer actions described with strut and tie models (tensile forces in red
and compressive forces in blue): (a) cantilever action; (b) residual tensile strength of
concrete; (c) dowelling action; (d) aggregate interlock; (e) combined shear-transfer ac-
tions; (f) arching action; (g) failure criterion of the Critical Shear Crack Theory (CSCT)
(adapted from Muttoni et al. [3]). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Crack kinematics, centre of rotation and horizontal opening u of the cracks trib-
utory to the opening of the critical shear crack in a region of length lB (specimen SC69
[11]).
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(in accordance to the numerical results of detailed calculations ac-
counting for all potential forces in the critical shear crack [11]).

3. Contribution of the shear-transfer actions

In the following, the contribution of the various shear-transfer ac-
tions to the shear resistance will be investigated by integration of
fundamental constitutive laws. This will be done with reference to a
potential critical shear crack characterized by a given shape and kine-
matics (crack opening and sliding). The location of the potential critical
shear crack will then be varied in order to find the governing location
leading to the minimum shear strength.

3.1. Crack shape and kinematics

The shape of the critical shear crack for slender members failing in
shear has been investigated in detail and described by Cavagnis et al.
[10]. The critical crack at failure can be approximated by a bi-linear
shape comprising a quasi-vertical part (segment A-B in Fig. 3a, whose
inclination is related to the moment-to-shear ratio [10]) and a quasi-
horizontal part (segment B-F in Fig. 3a), geometry also assumed by
other researchers [4,6,13,14].

A trend for the inclination of the quasi-vertical segment A-B with
respect to the moment-to-shear ratio αA was experimentally

investigated in [11] and approximated by the following expression:

⎜ ⎟= ⎛
⎝
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⎠

β π α
4

· 1
3AB
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where αA is the shear slenderness ratio defined as =αA
M

V d·
A

A
, with MA

and VA corresponding to the acting bending moment and shear at the
section where the investigated crack intercepts the flexural reinforce-
ment (section xA).

The length lA of the segment A-B of the crack can be calculated
assuming that it propagates up to the neutral axis [10]:

= −l d c
βsinA

AB (7)

With respect to the quasi-horizontal part of the crack, it was ob-
served that its origin is related to the (quasi-vertical) tensile stresses
developing at the tip of the crack, due to the cantilever action between
the flexural cracks (Kani’s tooth model, Fig. 1a, [3,11]) and that it
propagates at a load level which can be significantly lower than the
failure load. Although the length lF and the angle βBF of the segment B-F
were observed to have some level of scatter [3], in the following, lF is
assumed in a simplified manner to be equal to d/6 and βBF equal to π/8
in agreement to experimental measurements [10,11].

The kinematics of such crack is presented in Fig. 3b and c. Ac-
cording to [8] and to the measurements of [11], it can be assumed that
the centre of rotation is approximately located at the tip of the crack.
The rotation of the crack can thus be calculated as a function of the
reinforcement strain:

= =ψ u
d

ε l
d
·A

F

s B

F (8)

where uA and ɛs are respectively the horizontal opening of the crack and
the strain at the level of the longitudinal reinforcement, lB is the length
contributing to the opening of the critical crack according to Eq. (1)
(see Fig. 2) and = − +d d c l β·sinF F BF defines the distance from the tip of
the crack to the flexural reinforcement (Fig. 3b and c). The associated
relative movements are depicted in Fig. 3a. The shape and kinematics
allow defining the opening and sliding at each point of the critical crack
(opening in Fig. 3b and sliding in Fig. 3c). It can be noted that the top
part of the crack is characterized by pure opening (mode I), whereas the
quasi-vertical part by a combined crack opening and sliding (mixed
mode I-II).

3.2. Residual tensile strength contribution

Cracked concrete has a residual capacity to transfer tensile stresses
for low crack openings. The softening behaviour can be modelled using
several approaches. In this work, the proposal by Reinhardt [15]
characterized by a simple power law equation will be used:
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where c1=0.31 and = +w G f c c/ ·(1 )/c F ct 1 1 represents the maximum
crack width for stress transfer. The fracture energy of ordinary normal
weight concrete GF can be calculated according to fib Model Code 2010
[16] as =G f0.073· (N/mm,MPa)F c

0.18 and the tensile strength of con-
crete is assumed equal to =f f0.3·ct c

2/3 for fc < 50MPa [16] and
=f f0.3·(50· )ct c

1/3 for fc≥ 50MPa (approximating [16]). It shall be
noted that the fib Model Code 2010 does not explicitly account for the
size of the aggregates on the value of the fracture energy. Nevertheless,
this dependence is acknowledged by the code in its commentary and
also considered in previous versions of the fib Model Code (as that of
1990 [17]), implying that the shear transfer capacity of the residual
tensile strength depends eventually upon the aggregate size [8].

It is important to note that only the top part of the critical shear
crack (segment B-F) is characterized by a response in mode I and it is

Fig. 3. (a) Kinematics and displacements of the crack lips according to the adopted crack
shape; (b) crack opening w perpendicular to the crack surface and (c) sliding δ; (d)
equilibrium of the rigid-body and internal forces.
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then governed by residual tensile strength of concrete. The quasi-ver-
tical part (segment A-B) is characterized by a mixed mode response so
that the residual concrete tensile strength in that part is considered
together with the aggregate interlock contribution (see following sub-
section). By integration of the stresses along segment B-F, the shear
force can be determined as:

∫=V σ b β dη· ·cos ·Res
l

res BF0

F1

(10)

where η is the integration variable, lF1 is the integration limit, b is the
width of the member, σres refers to the residual stress normal to the
crack and βBF to the angle of segment B-F.

The resulting shear force carried by the residual tensile strength of
concrete according to Eq. (10) thus results:
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and the associated normal force is:

=N V β·tanRes Res BF (12)

The integration of stresses leads to two possible regimes: (i) cases
where the normal stresses develop along the whole length of segment B-
F ( ⩽ψ l w· F c) so that lF1= lF and (ii) cases where the normal stresses
develop only close to the tip of the crack ( >ψ l w· F c), with lF1 equal to:
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It is interesting to note that for the latter case, Eqs. (11) and (13)
give a simple expression:

=V
G b β d

u
· ·cos ·

Res
F BF F

A (14)

where the residual strength contribution depends on the fracture energy
of concrete GF and not on the distribution of the tensile stresses (Eq.

(9)). In addition, Eq. (14) clearly shows the hyperbolic decay of the
contribution VRes with increasing crack opening uA (in agreement to
[8]).

3.3. Aggregate interlock contribution

Many approaches based on the opening and sliding between the
rough surfaces of the crack have been proposed in the literature to
calculate the aggregate interlock stresses [18–20]. A consistent ap-
proach to this issue was developed by Walraven [18], as a two-phase
model, whose application has been generalized by Ulaga [21] and
Guidotti [22] accounting for different kinematical paths. A detail de-
scription of them can be found in [9,22]. However, the integration of
Walraven’s equations requires numerical procedures and it cannot be
solved in a closed-form manner. In order to avoid the use of numerical
procedures in this work, two analytical equations have been calibrated
by the authors of this paper on the basis of the Walraven’s model for
aggregate interlock, but considering the kinematics of Guidotti which is
more representative of the actual case (see Fig. 2). These assumptions
allow calculating the transferred shear stresses (τ) for a given opening
(w) and sliding (δ) as:

= =
+

τ τ f c δ
c w
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3

4/3

2
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as well as the normal stresses (σ):
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+

σ σ σ σ f c δ
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where σres is defined according to Eq. (9), c2=40, c3=35 and
c4=400 are constants; =δ δ d/ dg and =w w d/ dg are the normalized
crack sliding and crack opening and ddg is an average roughness whose
value can be calculated as follows:

= + ⩽
= + >

d d fc
d d f f

min(40 mm,16 ) for 60 MPa
min(40 mm,16 ·(60/ ) ) for 60 MPa

dg g

dg g c c
2 (17)

 
Fig. 4. (a) Kinematics of mixed mode tests performed by Jacobsen et al. (fc=41MPa, dg=8mm) [23]; (b–d) comparisons of aggregate interlock stresses according to the model of
Walraven [18] for kinematics analogue to that of Guidotti [22] and the aggregate interlock stresses calculated according to Eqs. (15) and (16) but neglecting the term σres; (e–g)
comparison of mixed mode test results [23] with shear and normal stresses calculated according to Eqs. (15) and (16).
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where dg refers to the maximum aggregate size. Justification of Eq. (17)
is provided later in this section.

Fig. 4b–d shows comparisons between the aggregate interlock
stresses according to the model of Walraven [18] for a kinematics
analogue to that of Guidotti [22] (initial opening w0 followed by a
combined opening and sliding, Fig. 4a) and the normal and shear
stresses calculated according to Eqs. (15) and (16), but neglecting the
term σres which is not accounted for in the theoretical model of Wal-
raven. The same comparisons are shown in Fig. 4e–g to aggregate in-
terlock stresses measured by Jacobsen et al. [23] for specimens tested
with the same kinematics, but accounting for the term σres (which is
actually present in the tests). It can be noted that the peak value of the
calculated shear and normal stresses is in good agreement with the
theoretical and experimental ones, as well as the stiffness and softening
properties. In addition, the simple superposition of the residual tensile
stresses (σres) and aggregate interlock stresses (σagg,0) gives reasonable
results compared to the test measurements (Fig. 4e–g): it can be ob-
served that the normal stresses vary from tension to compression during
the combined opening w and sliding δ, but remain in tension for low
values of δ.

It is important to mention that Eqs. (15) and (16) have been cali-
brated to be applied to calculate the aggregate interlock stresses for
mixed mode crack openings, with initial openings w0 and secant mixed
mode angle γ (variable along the quasi-vertical segment of the crack,
according to the kinematics of Fig. 3b and c) which are typical for
critical shear cracks of slender members (γ > 45°, [10]). With respect
to the average roughness (ddg), this term accounts for two issues:

– The first is that concrete cracks, present an undulated (rough) sur-
face (Fig. 5b and d), contrary to Walraven’s approach which as-
sumes cracks as perfect planar surfaces with protruding aggregates
(Fig. 5a and c). This roughness, ensuring the transfer of shear forces
by interlocking, is referred to as meso-roughness [8]. The value of
the meso-roughness depends on the surface properties after crack
development, but can be assumed as 16mm [3] for normal cases
(refer to Eq. (17)).

– The second is that, as observed by Sherwood et al. [24], the increase
of the interlock capacity is limited for large aggregates. In addition,
for high-strength concrete (fc > 60MPa), a reduction of the ag-
gregate size shall be considered [3], since cracks develop through
the aggregates, resulting in crack surfaces that are relatively smooth
[25].

As shown in Fig. 3a, only the quasi-vertical branch of the critical

shear crack (segment A-B) is characterized by a mixed mode I and II
behaviour. On the basis of the aggregate interlock laws and the relative
displacements between the lips of the crack, the aggregate interlock
forces at the critical crack can be determined as:

∫ ∫

∫
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where ξ is the integration variable, l1, l2 and l3 are the integration limit,
b is the width of the member, τagg,0, σagg,0 and σres are defined in Eqs.
(15) and (16) and βAB refers to the inclination of segment A-B. Note that
the integration of τagg,0 and σagg,0 leads to VAgg,0 and NAgg,0, whereas the
integration of σres leads to VAgg,res and NAgg,res.

In a general manner, the resulting shear force that can be trans-
ferred by aggregate interlock can be written as7:
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where = =
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δA
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(refer to Fig. 3a).

The integration limits l1 and l2 can be calculated on the basis of the
geometry of the crack (refer to Fig. 3a): = −l l β β·cos( )F AB BF1 and

= +l l lA2 1 . With respect to l3, the integration of aggregate interlock
stresses leads to three potential regimes:

(i) cases where the residual stresses σres develop through the whole
length of segment A-B (wA < wc corresponding to low crack openings),
hence l3 is equal to l2; (ii) cases where the residual stresses develop only
on the top region of the segment A-B (wB < wc < wA) so that l3 results:

=l w
w

l·c

A
3 2 (21)

and (iii) cases where no residual tensile stresses develop through the
quasi-vertical branch of the crack since the opening of the crack along
the whole segment A-B exceeds wc (corresponding to large crack
openings), hence l3 is equal to l1 and VAgg,res and NAgg,res are equal to
zero.

3.4. Dowelling action

Dowelling forces can be activated due to relative vertical displace-
ment between the crack surfaces at the level of the longitudinal re-
inforcement [9]. The capacity of dowelling action to transfer shear is
governed by the effective area of the concrete in tension near the bars
and by its effective tensile strength [26]:

Fig. 5. (a) Idealized crack plane according to the model of Walraven [18] and (b) actual
crack plane; crack surface near the aggregates: (c) idealized, according to the Walraven
[18] and (d) actual.
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=V n f b l· · ·Dowel ct ef ef ef, (22)

where n is the number of bars activated, fct,ef is the effective tensile
strength, bef and lef are the effective width and length in which the
tensile strength develops (Fig. 6a and b). The effective length is esti-
mated as lef=2db [26] (where db is the diameter of the reinforcing bars,
Fig. 6a) and the effective width bef (Fig. 6b) can be calculated as [26]:

= −b b n d cmin[ / ,4· ]ef b b (23)

where b is the width of the member and cb is the concrete cover.
With respect to the effective tensile strength of concrete (fct,ef), it

should be noted that its value is strongly influenced by the state of
strains in the flexural reinforcement (due to its interaction with bond
[26]). This effect can be estimated as [27]:

=f k f·ct ef b ct, (24)

where kb is a strength reduction factor and it follows a decay for in-
creasing strains in the flexural reinforcement (Fig. 6c). When the re-
inforcement is not strained, kb can be assumed equal to 1. In the fol-
lowing, the reduction factor for increasing value of strains in the
longitudinal reinforcement is calibrated by fitting the experimental
data presented in [27] as (refer to Fig. 6c):

= ⩽−k ε0.063· 1b s
1/4 (25)

By replacing the steel strain ɛs with the value =ε u l/s A B, the coeffi-
cient kb becomes:
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The shear resistance due to dowelling action of one-ways slabs with
one layer of reinforcement bars is thus:

Fig. 6. (a) Development of transverse stresses at the cover region along the bar and de-
finition of effective length lef; (b) distribution of transverse tensile stresses (perpendicular
to the bar) and definition of effective width bef (adapted from [26]; (c) reduction of the
effective tensile strength as a function of the longitudinal strains in the bar (experimental
data from [27]).

Fig. 7. Crack pattern and principal compressive strains at failure load for (a) a slender beam (specimen SC70) and (b) a squat beam (specimen SC67) (adapted from Cavagnis et al. [11]);
(c) hyphothesis of a stress field used to determine the contribution to the shear strength of the compression zone; (d) calculated contribution of the compression zone with respect to the
calculated shear capacity as a function of the distance between the tip of the crack and the axis where the load is applied (tests included in the database by Reineck et al. [31], assuming
xA=0.5a).
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= −V k f n b n d d· · ·( / )·2·Dowel b ct b b (27)

For comparison with test data, when no information is available on
the bar spacing or for multiple layers, a value of 3db will be assumed as
bar spacing. With this assumption, the last part of Eq. (27) becomes

n d4 · b
2 which can be expressed as a function of the reinforcement ratio

( ρ b d π16 · · / ) so that the shear strength due to the dowel contribution can
be approximated by:

≈V k f ρ b d5· · · · ·Dowel b ct (28)

3.5. Contribution of the compression zone

Shear can also be transferred by means of the inclination of the
compression chord [8]. For slender beams, this action is significant
mostly before the propagation of the segment B-F of the critical crack
within the compression zone and then it decreases progressively as the
inclination of the compression chord is rather flat (Figs. 1e and 7a)
[11]. For short-span beams (associated to low slenderness), with cracks
developing without disturbing the theoretical direct strut (typically
cracks whose tip is located close to the acting load), the arching action
can develop almost undisturbed and the shear strength is mostly con-
trolled by this action (refer to Figs. 1f and 7b).

A realistic assumption for the inclination of the compression zone is
derived based on the detailed observations of the principal strain di-
rections shown in Fig. 7a and b and in [11] (assuming that the in-
clination of principal strains and stresses is parallel). According to these
measurements, it can be assumed that the resultant of the forces of the
compression zone at the section corresponding to point F acts at a
distance cn=1/3 hF from the top compressive fibre, where hF is the
thickness of the compression zone above the tip of the crack (hF= d -
dF). In addition, at the edge of the loading plate, a stress block of
thickness 2 cm with compressive stresses equal to the full compressive
strength fc can be assumed (refer to Fig. 7c). This can be presumed to be
a lower-bound of the actual contribution, as the tensile stresses per-
pendicular to the strut are neglected. The horizontal and vertical
component acting in the compression zone can thus be calculated
iteratively by moment equilibrium of the rigid body with respect to
point of contraflexure (point P in Fig. 3d). The iterative procedure in-
volves assuming an initial distance cm between the top compressive
fibre and the centre of the theoretical strut at the edge of the loading
plate, which allows defining the inclination αc of the compression zone:

= −α c c
r

tan c
n m

F edge, (29)

where rF,edge is the distance between the tip of the crack and the edge of
the loading plate (Fig. 7c).

Varying the value of cm, the iterative procedure ends when σ reaches
the compressive strength of concrete fc and the vertical component
results:

= − = −V N c c
r

f b c c c
r

· · ·2· ·Compr Compr
n m

F edge
c m

n m

F edge, , (30)

Since the location of the critical shear crack is unknown, the itera-
tive procedure that allows calculating the contribution of the com-
pression zone shall be performed for any potential shear crack in the
span of the member. It can be noted that an increase of the moment-to-
shear ratio of the critical shear crack leads to an increase of the normal
force in the compression zone and thus to an increase also of the con-
tribution of the compression chord [7]. In Fig. 7d, the contribution of
the compression zone is calculated for 629 slender beams included in
the database by Reineck et al. [31], assuming xA=0.5a for all tests. It
can be observed that the percentage of the total shear carried by the
compression zone depends significantly on the ratio rF/hF, where rF is
the distance between the tip of the crack and the axis where the load is
applied. As the contribution of the compression zone shown in Fig. 7d is

relatively low for slender beams compared to other shear-transfer ac-
tions, a simplified expression can be used despite the non-negligible
scatter:

= <
V

V
k h

r
· 1Compr

c

c F

F (31)

where Vc is the total shear capacity
(Vc= VRes+ VAgg+ VDowel+ VCompr) and kc is a constant obtained by
fitting of the calculated contribution of the compression zone and that
can be assumed equal to 0.5. It is important to mention that when a
direct strut can develop, this approach is no longer valid since the
theoretical strut carries almost the total shear force (refer to Fig. 7b).
This is for instance the case of members with low shear-to-span ratios
(a/d < 2.5), with high pre-stressing forces (associated to low effective
slenderness [28]), or with no or limited bond strength [3].

The shear carried by the inclination of the compression chord yields
thus from Eq. (31):

=
−

+ +V k h r
k h r

V V V· /
1 · /

·( )Compr
c F F

c F F
Res Agg Dowel (32)

It can be noted that according to this approach, the contribution of
the compression zone is determined by the geometry and the location of
the critical shear crack and it is governed by the same mechanical
parameters as the other shear-transfer actions.

4. Evaluation of the shear capacity

The total shear strength Vc can be calculated by summing the con-
tribution of the various shear-transfer actions:

= + + + =
+ +

−
V V V V V

V V V
k h r1 · /c Res Agg Dowel Compr

Res Agg Dowel

c F F (33)

The three components VRes, VAgg and VDowel contained in Eq. (33) are
strain-dependent, which means that they can be expressed as a function
of the crack opening uA (see Eqs. (11), (20) and (22)). The crack
opening uA can be calculated using Eq. (4) which means that an itera-
tion is required (as the crack opening depends on the shear force V).
Calculating the shear strength requires thus assuming a location of the
critical crack and then iteratively increasing the crack opening and
checking that the acting shear force V is equal to the shear capacity Vc.
The solution V=Vc is the intersection between the load-deformation
relationship of Eq. (4) and the failure criterion of Eq. (33) as shown in
Fig. 8a. The governing location of the critical shear crack can therefore
be calculated as the one leading to the minimum strength of all po-
tential locations.

The iterative procedure for calculation of the strength can be sum-
marized in the following steps:

(1) Choose a location of the critical shear crack xA.
(2) Calculate the angle βAB as a function of αA=MA/(VA·d) according

to Eq. (6) (refer to Fig. 3a).
(3) Assume an initial crack opening uAi (as a first step uA0=0.001mm

can be assumed).
(4) Calculate, as a function of the shape of the crack and its kinematics,

the residual tensile strength force (VRes, Eq. (11) in Section 3.2), the
aggregate interlock force (VAgg, Eq. (20) in Section 3.3), the dow-
elling action (VDowel, Eq. (22) in Section 3.4), the contribution of the
compression zone (VCompr, Eq. (32) in Section 3.5) and the shear
capacity as the sum of these contributions (Vc, Eq. (33)).

(5) Calculate the crack opening uA as a function of the acting bending
moment at the section corresponding to the tip of the crack (MF),
(refer to Eq. (4) in Section 2), where MF is proportional to the shear
force (V).

(6) Iterate the crack opening uAi at step 3 and repeat from step 3 to 6,
until uA is equal to uAi.
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One of the main advantages of this approach is that it can be applied
to general or more complex cases and to different loading conditions.
This can be done by accounting for the influence of the main governing
mechanical parameters (moment-to-shear ratio aF, crack opening, re-
inforcement ratio, aggregate size, compressive strength) and evaluating
the contribution of the different load-carrying actions at the peak load.

Fig. 8a shows an instance of the contribution of the different shear-
transfer actions to the shear strength as a function of the strains at the
level of the longitudinal reinforcement. The example refers to a simply
supported beam without transverse reinforcement subjected to point
loading. The failure criterion in Fig. 8a is expressed as a function of the
parameter ε d d· /s dg, where the product ε d·s is assumed to be proportional
to the crack opening. Such normalization is consistent to that used by
the CSCT [3] (Fig. 1g) and allows for a direct comparison. It can be
observed that in this example the aggregate interlock is the governing
shear-transfer action and that the contribution of the concrete in ten-
sion is significant for low openings of the critical shear crack. On the
contrary, the contribution of the compression zone and the longitudinal
bars (dowelling action) to the shear strength are very limited in this
case. Moreover, it can be noted that the strength of each shear-transfer
action decreases for increasing opening of the critical crack and that
their decay follows a similar trend (in agreement to [8]). The reason for
this strength decay with increasing crack opening uA is illustrated in
Fig. 8b and c, where the residual tensile stresses (σres) and the aggregate
interlock stresses (σagg and τagg) are shown for three different values of
the opening of the shear crack ( =ε d d· / 0.01s dg , 0.03 and 0.05). It can be
noted that the normal stress σagg is in tension in a part of segment A-B
for low openings of the critical shear crack ( =ε d d· / 0.01s dg ), whereas for
larger openings it is always in compression (consistently to experi-
mental observations of other researchers [23,29]). With respect to the
shear stress τagg, it reaches a maximum value of 5MPa in the upper part
of the segment A-B and it decreases for increasing openings of the cri-
tical shear crack.

5. Discussion on the significance of shear-transfer actions and
their dependence on the critical shear crack development for
members subjected to point load

In Fig. 9 the location of the critical crack and the associated capa-
cities of the shear-transfer actions are investigated with reference to an
actual test (specimen SC61, presented in detail in [10]). The specimen
corresponds to a simply supported beam tested under concentrated load
(a/d=4.41, d= 556mm, ρ= 0.89%, fc = 35.3MPa, dg= 16mm).
Three different potential positions of the critical shear crack (xA= d,
xA=0.5a and xA= a − d) are investigated. Their inclinations βAB are

calculated according to Eq. (6) and correspond well with the observed
cracks (Fig. 9a). From Fig. 9b–d it can be noted that the strains at the
level of the longitudinal reinforcement and the contribution of the
different shear-transfer actions vary as a function of the location of the
critical shear crack. It can be observed that the contribution of ag-
gregate interlock is dominant in this case for all investigated positions
of the critical shear crack. Moreover, when the crack is located close to
support (in a general case, the point of contraflexure with zero bending
moment), the contribution of the compression zone is very limited and
the tensile strength of concrete plays a role, whereas when the critical
crack develops closer to the load introduction plate (section of max-
imum bending moment), the contribution of the compression zone in-
creases and the shear carried by the tensile strength of concrete de-
creases. In a general manner, the governing theoretical position of the
critical crack is defined as the location where the sum of the con-
tributions of the different shear-transfer actions reaches its minimum
value. In Fig. 9b–d, it can be observed that the shear capacity (sum of
all shear-transfer actions) does not significantly vary between the in-
vestigated sections xA and that the location of the critical crack has thus
a limited influence on the shear strength of the member. This explains
why for this type of members, the experimentally observed position of
the failure crack can present a large scatter and different shear-transfer
actions may eventually be governing [8,11].

The governing location of the critical crack is also investigated in
Fig. 10 for different values of slenderness ratio (a/d), reinforcement
ratio (ρ) and effective depth (d). In Fig. 10a, the contribution of the
different shear-transfer actions to the shear capacity is shown for each
position xA of the critical shear crack. It can be observed that for cracks
developing within a region between 0.4a and 0.6a, the total shear ca-
pacity is almost constant but the amount of shear carried by each shear-
transfer actions shows some level of variation. In Fig. 10b and c it can
be observed that an increase of the slenderness ratio leads to a variation
of the governing position of the critical crack, with the governing crack
closer to mid-span for less slender members. In Fig. 10d it can be noted
that the distance rF between the tip of the critical shear crack and the
axis where the load is applied varies between d and 2d. A similar trend,
concerning the location of the governing critical shear crack has been
experimentally observed in the tests performed by Leonhardt and
Walther [30]. The influence of the reinforcement ratio is also illustrated
in Fig. 10e. An increase in the reinforcement ratio leads to an increase
of the height of the compression zone, which therefore plays a more
significant contribution in carrying the shear. Consequently, for in-
creasing values of the reinforcement ratio, the governing location of the
critical crack shifts towards mid-span. It can be shown that almost all
other parameters have low influence on the governing position of the

Fig. 8. (a) Failure criterion and load-deformation
curve; shear-transfer actions: aggregate interlock,
residual tensile strength of concrete, dowelling
action and contribution of the compression zone;
(b) normal and (c) shear stresses developing along
the critical shear crack for three different values
of ε d d/s dg (0.01, 0.03 and 0.05).
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critical shear crack (Fig. 10f).
An interesting fact to be noted is that the curves representing the

shear capacity are very flat around the minimum (at a distance rA be-
tween 1.5d and 2.25d from the load introduction plate and at a value of
xA between 0.4a and 0.6a). For these cases, adopting a fixed control
section within this region is even sufficient for calculating the shear
strength (although the relative significance of the shear-transfer actions
may not be accurately assessed). To that aim, for instance, a value
xA=0.5a in agreement with the considerations of Reineck et al. [31] is
reasonable.

In Fig. 11, the calculated shear capacity of 635 rectangular concrete
beams without shear reinforcement (data from Reineck et al. [31]

completed with the tests by Cavagnis et al. [11]) is plotted against the
normalized crack width parameters. The plot is normalized to account
for the effective depth, the width, the compressive strength and the
aggregate size of the member [8]. The black points in Fig. 11 represent
the intersection between the failure criteria calculated according to Eq.
(33) at the control section xA= 0.5a and the load-deformation re-
lationship (refer to Eq. (5)). In addition, the direction of the failure
envelopes in the vicinity of the intersection is plotted (grey lines in
Fig. 11). It is interesting to note that failures occur actually in a narrow
band despite the large range of cases considered (effective depth d
ranging 50–2000mm, flexural reinforcement ratio ρ ranging 0.4–7%,
concrete strength fc ranging 10–110MPa, aggregate size dg ranging

Fig. 9. (a) Specimen SC61 [10]: crack pattern
(cracks in black for increasing load until max-
imum load, cracks in red after failure) and se-
lected potential locations of the critical shear
crack xA; (b–c–d) contribution of the various
shear-transfer actions at the different locations of
the critical shear crack (xA= d, xA=0.5a and
xA= a – d), intersection of the load-deformation
relationship with the failure criterion and com-
parison with the experimental result.

Fig. 10. Normalized shear strength as a function of the location of the critical crack (points in black refer to the location with the minimum shear strength): (a) contribution of the
different shear-transfer actions at different critical crack locations xA; (b–d) influence on the location of the critical shear crack of the slenderness ratio a/d, (e) of the longitudinal
reinforcement ratio ρ and (f) of the effective depth d.
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0–32mm, shear span a ranging 2.5d – 8.5d).
For design purposes, instead of calculating the failure criteria by

integration of the stresses along the critical shear crack, Muttoni et al.
[3] proposed a simple hyperbolic failure criterion (Fig. 1g) that ap-
proximates the failure band. Although the CSCT failure criterion pro-
vides a reasonable estimate of the shear capacity, Fig. 11 shows that its
accuracy can be enhanced for low values of the term ε d d· /s dg with a
power low expression (red line in Fig. 11) where the exponent of the
term ε d d· /s dg is −1/2:

= = ⩽v V
b

k d f

ε d d
v

· ·

· /
c

c c

s dg
c0

(34)

where vc is the shear capacity per unit length, k is a constant that can be
obtained by fitting of the calculated shear strengths (k=0.019 in
Fig. 11) and vc0 refers to the maximum shear strength per unit length
(not investigated in this study).

6. Validation of the approach with test results and improvement
of the CSCT

Fig. 12 shows the comparison between the shear strengths calcu-
lated according to the general procedure (Eq. (5)+ Eq. (33)), the
simplified approach (Eq. (3)+ Eq. (34)) and the original procedure of
the CSCT [3] with some selected experimental test series. The main
parameters governing the shear strength are investigated: the shear-to-
span ratio a/d, the longitudinal reinforcement ratio ρ, the effective
depth d, the compressive strength fc, the aggregate size dg and the
elastic modulus of the longitudinal bars Es. The comparison shows that
the calculated shear strengths are in very good agreement when com-
pared with experimental results and the three approaches follow similar
trends.

Fig. 13 presents a systematic comparison of the shear strengths
calculated solving the set of Eqs. (5) and (33) against 635 tests on
simply supported beams or cantilevers subjected to point loading (see
also Appendix B). The database used is that of Reineck et al. [31]
completed with the tests by Cavagnis et al. [11], where only rectangular
beams with a/d≥ 2.5 have been considered. It can be observed that
there are no clear trends for the main mechanical and geometrical
parameters. The average measured-to-calculated shear strength is 1.01
and the Coefficient of Variation is 13.6% (Appendix B and Table 1).

The accuracy of the model is comparable to that obtained using the
original formulation of the CSCT [3] (average measured-to-calculated
shear strength 1.02, CoV 15.6%, refer to Table 1). Based on the ob-
servations of the present study and recent experimental investigations
[24], the CSCT [3] can be improved accounting for ddg defined ac-
cording to Eq. (17) (the ratio between measured-to-calculated shear

Fig. 11. Calculated shear strengths of 635 rectangular beams failing in shear (a/d≥ 2.5)
(data from Reineck et al. [31] completed with the tests by Cavagnis et al. [11]) as a
function of the reinforcement strains at the critical section (xA=0.5a).

Fig. 12. Comparison of the refined proposed approach (black lines). the simplified approach (light blue lines) and the CSCT [3] (red lines) to test series investigating: (a) the slenderness
ratio a/d [11], (b) the reinforcement ratio ρ [32], (c) the effective depth d [33], (d) the compressive strength fc [34], (e) the aggregate size dg [35] and (f) the reinforcement elastic
modulus Es (steel and non-metallic reinforcements) [36]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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strength results equal to 1.01 with a CoV of 14.5%, refer to Table 1).
Moreover, as shown in Section 5, the accuracy of the hyperbolic

failure criterion of the CSCT can be enhanced assuming a power law
failure criterion (refer to Fig. 11). The shear capacity can thus be cal-
culated in a simple manner by combining the load-deformation re-
lationship of Eq. (3) and the simplified power law failure criterion of
Eq. (34), assuming the control section at xA=0.5a. For this simplified
approach, a good agreement is also found between the measured shear
strength in the tests and the calculated one, with an average ratio of
1.03 and with a value of CoV of 14.2% (Table 1).

7. Conclusions

This paper presents an overview of the shear-transfer actions and
their contribution to the shear strength of slender reinforced concrete
members without transverse reinforcement. The contribution of the
various shear-transfer actions is quantified on the basis of fundamental
constitutive laws and accounting for a realistic crack shape and kine-
matics (based on detailed measurements on tests). The main conclu-
sions are listed below:

(1) Shear can be carried by a number of potential shear transfer ac-
tions. In a general manner, there is not a governing shear transfer
action, and the amount of shear force carried by each action de-
pends on the location of the critical shear crack, its kinematics

(opening and sliding) and the crack roughness properties.
(2) The cantilever action (as described in the Kani’s tooth model) is

governing for load levels which are generally lower than the actual
failure load. This shear-carrying action is disabled by the develop-
ment of a horizontal branch of the critical shear crack generated by
the tensile stresses near the crack tip. The load can further be in-
creased above the capacity of the cantilever action as other shear-
carrying actions develop.

(3) For slender members, the failure load is eventually governed by
beam shear-transfer actions (aggregate interlock, residual tensile
strength, dowelling action and inclination of the compression
chord):
– For low crack widths in slender members, both aggregate inter-
lock and tensile strength of concrete play an important role. For
large crack widths, aggregate interlock becomes more dominant.

– The dowelling action of the longitudinal reinforcement exhibits a
more limited contribution than the other beam shear-carrying
actions. Yet, its contribution is not necessarily negligible.

– The contribution of the inclined compression chord for slender
members depends significantly on the location of the tip of the
critical shear crack. For critical shear cracks located at a certain
distance from the load introduction, its contribution is rather low.

For squat members, arching action is governing.

Fig. 13. Ratio Vexp/Vcalc (Vcalc calculated ac-
cording to the presented procedure: Eqs. (5) and
(33), assuming xA=0.5a) as a function of the
different mechanical and geometrical parameters
for the cases of slender simply supported beams
and cantilevers subjected to concentrated load
(data from Reineck et al. [31] completed with the
tests by Cavagnis et al. [11]): (a) shear span-to-
effective depth ratio a/d; (b) longitudinal re-
inforcement ratio ρ; (c) effective depth d and (d)
compressive strength fc.

Table 1
Comparison of calculated and experimental shear strengths: average value Vexp/Vcalc and coefficient of variation (CoV).

Vexp/Vcalc [−] CoV [−]

CSCT2008 [3], xcr= a-d/2 1.02 0.156
Proposed approach Eq. (5)+Eq. (33), assuming xA =0.5a 1.01 0.136
Improvement of the CSCT2008 [3] assuming ddg according to Eq. (17) 1.01 0.145
Simplified power law failure criterion Eq. (3)+ Eq. (34), assuming xA=0.5a 1.03 0.142
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(4) Despite the fact that the relative amount of each shear-transfer
action may differ depending on the location and shape of the cri-
tical shear crack, the total shear capacity (sum of the various con-
tributions) is relatively constant independently of the location of
the critical shear crack. This explains why the location of the failure
crack may vary significantly even for similar specimens.

(5) The force transferred by the different shear-transfer actions decay
for increasing openings of the critical shear crack and they are
governed by the same mechanical parameters. Accounting for this
fact and for the relatively constant sum of the various shear-transfer
actions, shear failures can be described by a single failure criterion.

(6) The main assumptions of the Critical Shear Crack Theory are in

agreement to the previous conclusions and allow describing shear
failures in a general manner. The shape of its failure criterion can be
derived by analytical and numerical considerations, allowing re-
lating the shear strength to the deformation capacity at failure, and
it can be enhanced for low values of crack opening with a power
law equation.
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Appendix A: Notation

a shear span (defined for specimens subjected to concentrated loads as the distance between the centre of the load and the centre
of the support)

aA M/V at section A
aF M/V at section F
b width of the beam
bef effective width of concrete in tension
c depth of the compression zone
c1, c2, c3, c4 constants of the model
cb concrete cover
cm distance from the top compression fibre to the centre of the inclined compression strut at the edge of the loading plate
cn distance from the top compression fibre to the axis where inclined force of the compression zone acts
d effective flexural depth
db diameter of reinforcing bar
ddg dg+16 [mm]
dF vertical position of the tip of the crack
dg maximum aggregate size
fc concrete compressive strength measured in cylinder
fct concrete tensile strength
fct,ef effective tensile strength of concrete
h beam height
hF distance from the top compression fibre to the tip of the shear crack
k coefficient power-law failure criterion
kb reduction factor tensile strength of concrete
kc coefficient compression zone
l span length
l1 l2 l3 lF1 integration limits
lef effective length
lA length of segment A-B of the critical shear crack
lB length of the region of the beam contributing to the opening of the critical crack
lF length of segment B-F of the critical shear crack
n number of longitudinal bars
rA horizontal distance from the axis of the load introduction to the onset of the critical shear crack
rF horizontal distance from the axis of the load introduction to the tip of the critical shear crack
rF,edge horizontal distance from the edge of the loading plate to the tip of the critical shear crack
u opening of the crack measured along the horizontal direction
uA horizontal opening of the critical shear crack at point A
v opening of the crack measured along the vertical direction
vA vertical opening of the critical shear crack at point A
vc shear capacity per unit length
vc0 maximum shear strength per unit length
w crack width perpendicular to the crack surface
w normalized crack opening w/ddg
wA opening perpendicular to the crack surface at point A
wB opening perpendicular to the crack surface at point B along segment A-B
wc maximum crack width allowing tensile stresses to develop in cracked concrete
xA horizontal distance from the support to point A
xF horizontal distance from the support to point F
z inner level arm
As area of longitudinal bars
Ec modulus of elasticity of concrete
Es modulus of elasticity of steel
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GF fracture energy
M bending moment
MF bending moment at the section corresponding to the tip of the critical shear crack
NAgg horizontal component of the aggregate interlock action
NCompr horizontal component of the inclined compression chord
NRes horizontal component of the residual tensile strength of concrete
V acting shear force
Vc shear capacity
Vmax shear force at failure (maximum value)
VAgg shear force carried by aggregate interlock action
VCompr shear force carried by inclined compression chord
VDowel shear force carried by dowelling action
VRes shear force carried by residual tensile strength of concrete
αc inclination of the compression chord
αA MA/(VA·d) in section A
βAB angle of quasi-vertical segment of the critical shear crack (segment AB)
βBF angle of quasi-horizontal segment of the critical shear crack (segment BF)
γ secant mixed mode angle
γT tangent mixed mode angle
δ crack sliding
δA crack sliding at point A
δ normalized crack sliding δ/ddg
ɛs steel strain
η integration variable for the residual tensile stresses
ξ integration variable for the aggregate interlock stresses
ρ reinforcement ratio of tension reinforcement
σagg aggregate interlock normal stress
σres residual tensile stress
τagg aggregate interlock shear stress
ψ rotation of the critical shear crack

Appendix B

Test series considered in this study and comparison with the proposed expressions: Eq. (5)+ Eq. (33).

Researchers No. of specimens fc [MPa] b [mm] d [mm] a/d [−] ρ [%] Vexp/Vcalc (COV)

Adebar et al. [37] 5 49.3–58.9 290–360 178–278 2.92–4.56 0.99–3.04 0.84 (0.068)
Ahmad et al. [38] 17 63.4–68.7 127 184–208 2.70–4.00 1.77–6.64 1.03 (0.210)
Ahmad et al. [39] 3 43.6–80.8 102 178 3.70 1.40 0.95 (0.070)
Angelakos et al. [34] 7 21–80 300 895–925 2.88–2.97 0.50–2.09 0.96 (0.146)
Aster et al. [40] 5 24.6–30.4 1000 250–750 3.65–3.68 0.42–0.91 1.01 (0.072)
Lubell et al. [41] 11 37.1–64.6 250–3005 306–916 2.87–3.27 0.76–0.93 1.12 (0.089)
Bernander [42] 6 27.6–29.1 100 168 4.17 0.97–1.17 1.07 (0.062)
Bhal [33] 8 23.2–29.6 240 300–1200 2.94 0.63–1.26 1.03 (0.114)
Bresler et al. [43] 3 22.6–37.6 305–310 461–466 3.80–6.77 1.81–2.73 1.24 (0.046)
Cladera et al. [44] 6 49.9–87 200 360 2.90 2.23 1.00 (0.135)
Cao [45] 2 27.5–30.1 300 1845–1925 2.77–2.89 0.36–1.52 1.23 (0.042)
Cederwall et al. [46] 1 29.3 135 234 3.42 1.07 1.24 (−)
Chana [47] 23 20.8–38.9 60–203 106–356 3.00 1.74–1.78 1.02 (0.073)
Chang et al. [48] 15 17.7–38.6 102 137 2.60–4.09 1.86–2.89 0.91 (0.115)
Collins et al. [25] 7 36–98 300 925 2.88 1.01 1.07 (0.156)
Diaz de Cossio et al. [49] 5 19.5–31.5 152 254 3.30–5.30 0.98–3.33 0.99 (0.061)
Thorenfeldt et al. [50] 14 54–97.7 150–300 207–442 3.00–4.00 1.82–3.24 1.15 (0.119)
Elzanaty et al. [51] 11 20.7–79.3 177.8 267–273 4.00–6.00 0.93–3.21 0.88 (0.060)
Feldman et al. [52] 8 21.5–36.7 152 252 2.87–6.04 3.35 1.11 (0.141)
Ferguson [53] 1 29.3 101 189 3.23 2.08 0.82 (−)
Ghannoum [54] 22 34.2–58.6 400 65–889 2.50 1.15–2.00 0.98 (0.110)
Grimm [55] 11 90.1–110.9 300 146–746 3.53–3.90 0.83–4.22 1.00 (0.130)
Hallgreen [56] 23 31.1–92.4 150–337 191–211 2.61–3.66 0.57–4.11 1.21 (0.084)
Hamadi [57] 4 21.0–30.4 100 370–372 3.37–5.90 1.08–1.79 1.17 (0.082)
Hanson [58] 4 20.9–31.0 152 267 4.95 1.25–3.50 0.97 (0.073)
Hedman et al. [59] 4 19.9–29.5 152 267 4.95 1.25–2.22 1.03 (0.051)
Islam et al. [60] 5 26.6–83.3 150 203–207 3.86–3.94 2.03–3.22 1.02 (0.105)
Johnson et al. [61] 1 55.9 305 539 3.10 2.49 0.82 (−)
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Kani [62] 37 24.8–30.8 150–612 132–1097 2.50–8.03 2.59–2.87 1.02 (0.106)
Kani et al. [32] 52 15.4–36.7 149–157 264–287 2.50–5.97 0.49–2.83 0.95 (0.108)
Kawano et al. [63] 8 20.6–27.3 105–600 300–2000 3.00 1.18–1.37 1.06 (0.099)
Kim et al. [64] 18 52 170–300 142–915 3.00–6.00 1.01–4.68 0.94 (0.087)
Krefeld et al. [65] 50 12.9–39.0 152–254 238–483 2.67–8.10 0.80–4.92 0.95 (0.092)
Küng [66] 7 18.4–21.7 140 200 2.50 0.36–1.82 1.20 (0.154)
Kuhlmann et al. [67] 2 49.6 402 250 2.86–4.86 1.56 1.23 (0.121)
Kuhlmann et al. [68] 4 43.4–47.6 400 250 2.86–4.86 1.57–1.92 1.05 (0.033)
Kulkarni et al. [69] 4 40.6–43.6 102 152 3.50–5.00 1.38 1.04 (0.053)
Laupa et al. [70] 6 14.8–32.3 152 262–269 4.82–4.95 1.91–3.97 0.89 (0.062)
Leonhardt et al. [30] 26 13.3–38.3 50–500 70–600 2.78–5.91 1.33–2.40 1.01 (0.113)
Marti et al. [71] 2 29.3–29.5 400 167 3.83 1.38–1.84 1.18 (0.029)
Mathey et al. [72] 9 23.5–30.6 203 403 2.84–3.78 0.47–2.54 0.93 (0.085)
Moody et al. [73] 23 15.4–41.2 152–178 262–272 2.85–3.41 1.60–2.37 0.95 (0.078)
Morrow et al. [74] 12 14.7–45.7 305–308 356–375 3.00–8.10 1.27–3.91 1.00 (0.045)
Mphonde et al. [75] 9 21.3–96.1 152.4 298 3.49 2.33–3.34 1.07 (0.043)
Niwa et al. [76] 3 24.6–27.1 300–600 1000–2000 2.98 0.14–0.28 1.25 (0.135)
Podgomiak [77] 8 37–99 300 225–925 2.88–2.97 0.51–3.14 0.98 (0.101)
Rajagopalan et al. [78] 10 23.7–36.6 151–154 259–268 3.83–4.27 0.25–1.73 0.99 (0.170)
Regan [79] 5 24.5–29.9 152 272 3.27 1.46 1.06 (0.076)
Rehm et al. [80] 1 23.7 900 313 3.19 1.21 1.18 (−)
Reineck et al. [81] 3 24.6–25.8 500 225–226 2.50–3.50 0.79–1.39 1.02 (0.032)
Remmel [82] 4 84.5–85.1 150 160–165 3.06–4.00 1.87–4.09 0.97 (0.053)
Rüsch et al. [83] 3 23–24.2 90–180 111–262 3.60 zo 3.62 2.64–2.65 0.87 (0.014)
Salandra et al. [84] 4 53–70.1 102 171 2.59–3.63 1.45 0.83 (0.127)
Scholz [85] 7 80.6–96.8 200 362–372 3.00–4.00 0.81–3.36 1.01 (0.132)
Taylor [86] 6 27.8–33.2 203 370 3.02–3.50 1.03–1.55 1.09 (0.104)
Taylor [87] 5 22–28.7 200–400 465–930 3.01 1.35 1.12 (0.090)
Walraven [88] 3 24.1–24.4 200 125–720 3.00 0.74–0.83 1.07 (0.077)
Xie et al. [89] 2 38.5–100.9 127 216 2.93 2.08 0.83 (0.022)
Yoon et al. [90] 3 36–87 375 655 3.23 2.88 0.83 (0.052)
Yoshida [91] 1 33.6 300 1890 2.82 0.74 0.95 (−)
Lubell [92] 7 36.9–41 249–1170 287–538 2.91–3.57 0.33–1.73 1.19 (0.079)
Sherwood [35] 21 28.1–77.3 122–300 280–1450 2.77–2.87 0.25–0.83 1.11 (0.111)
Thiele [93] 5 24.6–42.5 400 167–297 3.47–4.97 0.93–2.41 1.05 (0.092)
Winkler [94] 5 35.1 150–450 200–900 3.91–3.94 1.18–1.20 1.09 (0.067)
Rosenbusch [95] 2 43.4 200 260 3.37 0.65–3.55 0.98 (0.077)
Tureyen et al. [96] 3 40.9–43.7 457 360 3.38 0.36–1.92 1.07 (0.121)
Bentz et al. [97] 9 34.3–36.1 101–106 84–333 2.80–2.94 1.55–1.63 1.05 (0.091)
Sneed et al. [98] 8 64.8–74.8 203–613 233–822 2.87–2.92 1.20–1.60 0.79 (0.290)
Cavagnis et al. [11] 6 32.6–35.6 250 556–559 2.52–6.92 0.54–0.89 1.04 (0.078)

635 1.01 (0.136)

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.engstruct.2017.12.004.
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