
Article publié par le Laboratoire de Construction en Béton de l'EPFL
 
Paper published by the Structural Concrete Laboratory of EPFL

Article publié par le Laboratoire de Construction en Béton de l'EPFL
 
Paper published by the Structural Concrete Laboratory of EPFL

Title: The theoretical principles of the critical shear crack theory for punching shear
failures and derivation of consistent closed-form design expressions

Authors: Muttoni A., Fernández Ruiz M., Simões J. T.

Published in: Structural concrete

DOI 10.1002/suco.201700088

Pages: pp. 1-17
Year of publication: 2017
Type of publication: Peer reviewed journal article

Please quote as: Muttoni A., Fernández Ruiz M., Simões J. T., The theoretical principles of the
critical shear crack theory for punching shear failures and derivation of
consistent closed-form design expressions, Structural concrete, 2017, pp. 1-17.

[Muttoni17] Downloaded by infoscience (http://help-infoscience.epfl.ch/about) 128.178.224.97 on 13.11.2017 12:41

https://ibeton.epfl.ch
https://ibeton.epfl.ch/default_e.asp
https://ibeton.epfl.ch
https://ibeton.epfl.ch/default_e.asp
https://ibeton.epfl.ch/Public/publications.asp?nomPers=Muttoni&l=e
https://ibeton.epfl.ch/Public/publications.asp?nomPers=migferna&l=e
https://ibeton.epfl.ch/Public/publications.asp?nomPers=jtsimoes&l=e
http://dx.doi.org/10.1002/suco.201700088


T ECHN I CAL PA PER

The theoretical principles of the critical shear crack theory for
punching shear failures and derivation of consistent closed-form
design expressions

Aurelio Muttoni | Miguel Fernández Ruiz | João T. Simões

École Polytechnique Fédérale de Lausanne,
School of Architecture Civil and Environmental
Engineering, Station 18, CH-1015, Lausanne,
Switzerland

Correspondence
João T. Simões, École Polytechnique Fédérale de
Lausanne, School of Architecture Civil and
Environmental Engineering, Station 18, CH-1015
Lausanne, Switzerland.
Email: joao.simoes@epfl.ch

The mechanical model of the critical shear crack theory (CSCT) has been used in
the past to investigate a number of shear-related problems, such as punching of
slab–column connections with and without transverse reinforcement. In this paper,
a discussion on the differences and analogies between slender slabs and squat
members (footings) without transverse reinforcement is presented on the basis of
the CSCT. This discussion highlights how bending and shear deformations influ-
ence the opening of the critical shear crack and eventually its ability to transfer
shear forces. On that basis, it is investigated and justified a power-law expression
to characterize the failure criterion of the CSCT. This criterion, in combination
with a suitable load–deformation relationship, can be used to derive closed-form
expressions for punching shear design. The accuracy of these expressions is veri-
fied against databases of slender slabs (121 specimens) and footings (34 speci-
mens) with consistent agreement.

KEYWORDS

closed-form design expressions, concrete structures, critical shear crack theory,
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1 | INTRODUCTION

Research on punching shear and its design implications has
drawn much interest of the scientific and practitioner
communities.1–3 This has been motivated by a number of
reported collapses4,5 and by the fact that many design
expressions found in codes of practice still have an empiri-
cal nature.6,7 Following this research effort, a number of
mechanically based models have been developed in the past
with the aim of providing consistent design expressions for
punching shear.

One of the first models with a rational basis to calculate
the punching shear strength was proposed by Kinnunen and
Nylander8 in the 1960s. This model considers that shear is
carried by a conical strut whose failure in compression trig-
gers the punching failure of the slab–column connection.
Assuming that (a) failure of the strut occurs for a given

level of the compressive tangential strain developing in the
soffit of the slab in vicinity of the column and (b) by adopt-
ing a kinematics defined by a conical deformation in the
outer region of the slab, Kinnunen and Nylander8 estab-
lished a failure criterion as a function of the rotation of the
slab (whose calculation was performed adopting a bilinear
moment–curvature relationship). The rational theory of Kin-
nunen and Nylander8 was later adapted by other researchers
and extended to footings, high strength concrete and to have
consistent treatment of size effect (e.g., References 9–11).

Consistently with the principal ideas of Kinnunen and
Nylander's model, Muttoni and Schwartz12 developed a
rational approach to punching. The main ideas of Muttoni13

are that strains localize in a critical shear crack (Figure 1a)
that governs the ability of a slab to transfer shear forces
(as a function of the crack lips displacements and their
roughness).12–14 This approach was also shown to be
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applicable in a consistent manner to failures in shear for
one-way slabs14 and for shear-reinforced slabs15 and was
named as the critical shear crack theory (CSCT).

In agreement to the CSCT assumptions, and as con-
firmed experimentally,13,16 larger openings of the critical
shear crack reduce the capacity of transferring shear forces.
Thus, the punching strength and the deformation capacity of
a slab–column connection at failure can be related by means
of a failure criterion (Figure 1c). By intercepting the failure
criterion with the load–deformation relationship, the punch-
ing shear strength and its associated deformation can be cal-
culated, see Figure 1b.

With respect to the load–deformation relationship for
slender slabs, it can be characterized by the rotation (ψ) of
the slab.13 Such load–rotation relationship is highly non-
linear and influenced by cracking, tension-stiffening effects,
and potential reinforcement yielding,17 thus being influenced
by the reinforcement amount and properties. As a conse-
quence, failures can occur in different regimes (Figure 1b)16:
with all reinforcement remaining elastic, part of the reinforce-
ment being yielded or even at the flexural capacity. Although
detailed calculation of the load–rotation relationship can be
performed (considering quadri-linear moment–curvature dia-
grams incorporating cracking and tension-stiffening
effects),13 the use of a non-linear parabolic law (derived from
the quadri-linear model18) has shown to be efficient for
design purposes in terms of accuracy and ease of use13:

ψ = km�rsd
fy
Es

ms

mR

� �3=2

; ð1Þ

where rs refers to the distance between the axis of the sup-
ported area and the line of zero radial moment, d is the
effective depth, fy and Es are respectively the yield strength
and the modulus of elasticity of flexural reinforcement, ms

is the average acting bending moment in the support strip
(see, e.g., Reference 19 for its definition), mR is the average

moment capacity in the support strip,18 and km is a factor
whose value depends on the level of refinement used to esti-
mate the acting bending moment (value of 1.2 for refined
analysis or 1.5 otherwise).18 It can be noted that an advan-
tage of this approach is that tailored load–rotation relation-
ships can be developed for particular cases.20–24

With respect to the failure criterion, Muttoni and
Schwartz12 considered that, for slender slabs, the opening of
the critical shear crack (w) could be assumed proportional
to the slab rotation ψ times the effective depth d. Thus, by
assuming that w / ψ � d, the following failure criterion was
proposed13:

VRc

b0�d�
ffiffiffiffi
fc

p =
3=4

1+ 15� ψ �d
dg0 + dg

; ð2Þ

where b0 is the control perimeter (located at d/2 from the
edge of the supported area; round corners in case of square
columns) and dg0 represents the reference aggregate size
(dg0 = 16 mm for normal weight concrete13). The term
dg0 + dg (originally introduced by Vecchio and Collins25)
refers in fact to a reference crack roughness accounting for
the maximum aggregate size (dg) but also for the fact that
the crack surface is not perfectly planar.26 It can also be
noted that the term ψ � d actually accounts in a combined
manner for the influence of size and strain effects.26

With respect to compact slabs or footings, the main
assumptions of the CSCT have been demonstrated to be
also valid (crack localization and influence of crack width
and crack roughness on the capacity to transfer shear forces
at the failure surface).27 Yet, in these cases, the crack kine-
matics at failure is more complex and shall account for
shear deformations, as also demonstrated by Simões et al.27

In this paper, the mechanical model of the CSCT is pre-
sented and discussed in terms of its failure mechanism and
associated stresses developing on the failure surface. The
calculation of the punching strength on the basis of the

failure 

criterion
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FIGURE 1 (a) Schematic representation of cracking at a slab–column connection; (b) potential punching failures; (c) failure criterion of critical shear crack
theory (CSCT)13 compared to tests according to the database of Muttoni13
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stresses on the failure surface is also reviewed and discussed
for slender members (where flexural deformations govern)
based on the work of Guidotti28 and for squat members
(where shear deformations govern) having as basis the
works of Braestrup et al29 and Simões et al.30 On the basis
of this review, it is presented how the CSCT failure crite-
rion can be formulated to account in a general manner for
both cases. The resulting failure criterion is thereafter used
in combination with the load–deformation relationship to
calculate the punching strength in a closed-form manner. It
is also shown that the closed-form expression derived from
the mechanical model of CSCT can be extended in a very
simple manner to account for other effects, as membrane
action and slab continuity.

These closed-form expressions are very convenient for
design and assessment purposes, allowing a direct calcula-
tion of the punching strength and providing the designer
with a clear view of the role of the various parameters
implied. The results obtained are compared with databases
of slabs and footings showing consistent agreement.

2 | THE MECHANICAL MODEL OF CSCT
FOR PUNCHING SHEAR

2.1 | Failure mechanism and associated internal
stresses

Two-way slabs develop radial and tangential cracking due
to the presence of respectively tangential and radial bending
moments in the supported area (see Figure 1a). Due to the
presence of shear forces, the tangential cracks in the region
of the column develop in an inclined manner, disturbing the
inclined compression strut carrying shear.13

The mechanical model of the CSCT considers that crack
localization occurs in a single crack (named as critical shear
crack), and that the capacity of the critical shear crack to
transfer shear forces depends upon the displacements
between crack lips and their roughness.12–14

Calculation of the punching resistance can be performed
on the basis of the assumptions by defining a critical shear
crack composed of two different segments with different
phenomenological behaviors, refer Figure 2a and
b. Segment A corresponds to the crack originated by bend-
ing and segment B develops between the edge of the col-
umn and the segment A. With respect to segment A, it
corresponds to a crack where a mixed-mode (opening and
sliding) response occurs, while segment B behaves poten-
tially as a shear band (with smeared cracking, eventually
leading to coalescence in a single crack, Figure 2b and c).

The kinematics of the critical shear crack in both segments
can be defined as a function of the displacements normal and
parallel to the crack lips, as for instance shown in Simões
et al.30 Such kinematics results from the vector addition of the
initial flexural crack opening (function of the slab rotation ψ)
and of the shear deformations (characterized by the displace-
ment δ occurring with a variable angle γ with respect to the
critical shear crack, see Figure 2b). The general kinematics of
the critical shear crack considers therefore a combination of
both rotational and translational displacements. The extent of
the two regimes developing along the critical shear crack pre-
viously mentioned, the kinematics (ψ , δ and γ) and the shape
of the critical shear crack depend significantly on mechanical
and geometrical properties. As a consequence, also the result-
ing stresses developing along the critical shear crack are a
function of the referred variables. The slenderness of the
member is probably one of the most influencing parameters
with this respect.27 In the following, previous works used to
investigate suitable kinematics and resulting internal stresses
based on the CSCT mechanical model for slender slabs and
squat members (footings) are presented and discussed.

2.2 | Application to slender members

The case of slender slabs with medium to large rotations
was investigated in the frame of CSCT by Guidotti.28 As
shown in Figure 3a, Guidotti28 considered a simplified
shape for the critical shear crack developing between the
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edge of the column and the level of the flexural reinforce-
ment with a constant inclination of β = 45� (corresponding
only to segment A of Figure 2). The resulting kinematics in
this case28 is composed by a rotation leading to a crack
opening normal to the crack lips, followed by a crack slid-
ing δ (developing with a constant angle γ with respect to
the crack lips), see Figure 3a and b.

For such failure mechanism, the potential shear-transfer
contributions developing along the failure surface and con-
tributing to the punching shear strength can be calculated.
They correspond to the aggregate interlock (calculated by
Guidotti28 according to Walraven31), residual tensile
strength (calculated according to Hordijk32) and dowelling
action (that can be neglected compared to the others due to
the development of the spalling cracks, according to Gui-
dotti).28 With respect to the aggregate interlock contribu-
tion, Guidotti28 considered a consistent kinematics at failure
(initial crack opening w0 developing before the crack sliding
δ taking place, refer Figure 3b–d for kinematics and calcu-
lated shear and normal stresses). It should be noted that, as
shown in Figure 3c and d, crack sliding δ is required to acti-
vate the aggregate interlock stresses.

Figure 4a shows the punching shear strength calculated
under the assumptions of Guidotti28 for a general case
(h = 0.25 m; d = 0.21 m; fc = 40 MPa; dg = 16 mm and
ρ = 0.75%) as a function of the rotation of the slab. Also,

the resulting internal stresses developing along the critical
shear crack are shown in Figure 4a for three different rota-
tions: low, medium, and high rotations. A decay of shear
strength with the increase of the crack width can be clearly
observed, as a result of the decrease of the capacity of the
different shear-transfer actions (due to loss of contact in the
upper part of the slab and by the softening in the lower part
due to increasing crack opening). It can be noted that the
resulting stress state can be described by an inclined com-
pression strut whose strength is thus strain and size depend-
ent. This result is in agreement with the CSCT assumptions
as well as those of Kinnunen and Nylander.8 As shown in
Figure 4a, the hyperbolic failure criterion proposed by Mut-
toni13 and defined in Equation (2) approximates fairly well
the results predicted by the mechanical model of CSCT pre-
sented by Guidotti.28

The approach of Guidotti28 also allows validating the
assumption of the CSCT for slender slabs that the crack
width w can be assumed to be correlated to the product ψd.
This fact is shown in Figure 4b where the numerical results
from Guidotti28 for the crack width w measured at peak load
and at d/2 from the edge of the column are shown. It can be
noted that the crack width at failure, accounting for the
development of the flexural and shear deformations (ψ and
δ), follows a trend which is almost linear. This result is
physically justified as larger crack openings require larger
shear deformations δ to mobilize aggregate interlock forces
and thus both parameters are related.

2.3 | Application to footings and squat members

For small rotations, the approach of Guidotti28 is not neces-
sarily governing, as other shapes of the failure surface and
associated kinematics may limit the punching shear
strength. This topic has been investigated in the past (for
instance by Braestrup et al29 on the basis of limit analysis
and more recently by Simões et al30) showing that for foot-
ings or squat members, flexural deformations play a more
secondary role.27 In these cases, the behavior is mostly con-
trolled by segment B in Figure 2b, where the shear deforma-
tions are governing.

According to Braestrup et al,29 a kinematically admissi-
ble mechanism in these cases consists of a vertical transla-
tion of the outer portion of the member (Figure 5a, also used
by other researchers33–36). It is interesting to note that the
failure mechanism originally proposed by Braestrup et al29

corresponds to a limit situation of the mechanical model of
CSCT where only segment B develops. Also, in agreement
to the CSCT assumptions, and as discussed by Simões
et al,30 the capacity of the governing failure surface to trans-
fer shear forces in these cases is affected by its state of defor-
mations (crack opening). The punching strength calculated
accounting for such failure mechanism and by adopting a
rigid-plastic constitutive law for concrete (Figure 5b and c)
can be consulted in Reference 29 It can be in a general
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manner expressed as (see Figure 5d using axis of ordinates
on the left, neglecting the capacity of the concrete cover):

VR = kv�b0�d�fce; ð3Þ
where kv is a parameter which depends upon the member
slenderness (function of rc, d, and r0) and the friction angle
of concrete (φ). It shall be noted that in Equation (3), the
punching strength (VR) is also dependent on the effective
compressive strength of concrete (fce). This parameter
accounts for the brittleness of concrete in compression and
for the influence of the state of deformations as proposed by
Nielsen and Hoang37:

fce = fc�η= fc�ηfc�ηw; ð4Þ
where η is a global effectiveness factor that, for this case, can
be split into two distinct ones: ηfc and ηw referring to the effec-
tiveness factors accounting for concrete brittleness and the state

of deformations, respectively. With respect to the concrete brit-
tleness in compression, previous works on the application of
limit analysis for the case of punching shear (e.g., References
37–40) have suggested adopting a relationship ηfc = kfc=

ffiffiffiffi
fc

p
.

With respect to ηw, its value may depend on the state of
strains30 and also on the size of the member.37

For practical purposes, the maximum achievable punch-
ing strength can therefore be calculated as (see Figure 5d
using axis of ordinates on the right):

VR = kv�kfc�ηw�d�b0�
ffiffiffiffi
fc

p
: ð5Þ

It can be noted that this equation presents the same para-
meters d, b0, and

ffiffiffiffi
fc

p
as that of the CSCT failure criterion

(refer Equation (2)). Additionally, it considers that the shear
capacity is affected by the size and strains of the member,
both parameters influencing the opening of the critical shear
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crack as considered in the CSCT mechanical model. As
shown in the results of Figure 5d, since the variation of the
maximum achievable punching shear strength is relatively
limited, the consideration of a constant value for the multi-
plication of the parameters kv � kfc � ηw equal to 0.55 is a
reasonable simplification for design purposes.

3 | CONSIDERATIONS ON THE FAILURE
CRITERION OF THE CSCT

Calculating the punching response on the basis of the
mechanical model of the CSCT by performing a numerical
integration of the resulting stresses on the failure sur-
face28,30 is a general but not suitable approach for design
purposes. To provide a simpler design approach, it can be
observed that, when normalized in terms of the main physi-
cal parameters of the CSCT mechanical model, both numer-
ical integrations28,30 and test results remain within a narrow
failure region (Figure 1c). These results indicate a decrease
of the normalized strength for increasing normalized crack
opening. On that basis, Muttoni13 proposed a simplified
expression for the failure criterion with a hyperbolic shape
(refer Equation (2) and Figure 1c).

This hyperbolic failure criterion and the parabolic load–
rotation relationship (Equation (1)) can be used in a simple
and direct manner for design using the Levels-of-
Aproximation approach.13,18,19,41–43 This design approach
has proven to be general and efficient for design and to suit-
ably account for size and strain effects.17 Yet, closed-form
solutions (which may enhance the usability of the theory for
design and assessment and also clarify the significance of
the various mechanical and geometrical parameters on the
punching strength) cannot be obtained by using the previous
Equations (1) and (2).

Despite the advantages of the hyperbolic failure crite-
rion, a more general expression could be formulated by
accounting for the two relatively distinct behaviors
described before (failures governed by flexural deforma-
tions28 and failures governed by shear deformations30) in
order to address in a more clear manner the differences
between slender and squat members. A proposal with this
respect has been recently presented by Muttoni and Fernán-
dez Ruiz,44 by considering the following power-law
expression:

VRc =VRc,0� ddg
25�ψ �d
� �2=3

≤VRc,0; ð6Þ

where ddg refers to the reference value of roughness of the
crack and VRc,0 refers to the maximum achievable punching
shear strength. With respect to term ddg, it can be calcu-
lated as:

ddg = dg0 + dg�min
60
fc

� �2

,1

 !
≤ 40mm; ð7Þ

where dg0 is the reference roughness value of the crack,
which can be adopted equal to 16 mm for normal concrete.
This term for the roughness is thus consistent to that previ-
ously assumed by the CSCT (refer Equation (2)), but
accounts additionally for two effects: (a) the limit on the
positive influence of aggregate size on the shear-transfer
capacity for large aggregate sizes (limit to 40 mm in accord-
ance to Sherwood et al45) and (b) the reduced roughness of
the surface for high strength concrete (fracture developing
through the aggregates).46

With respect to term VRc,0, its value can be calculated
based on Equation (5) as follows:

VRc,0 = 0:55�b0�d�
ffiffiffiffi
fc

p
: ð8Þ
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It can be noted that this value is considered constant,
although according to Equation (5) a dependency on the
crack width may result. Such dependency allows for a
smooth transition between both regimes, but will be
neglected for simplicity reasons. The power-law failure cri-
terion defined in Equations (6) and (8) is compared in
Figure 6a to the strength calculated according to the
approach by Guidotti28 (for the same case as presented in
Figure 4). It can be noted that the simplified failure criterion
finely agrees with the numerical integration of stresses and
also yields close results to those of the hyperbolic failure
criterion of Equation (2). In addition, the power-law failure
criterion is compared in Figure 6b with the experimental
results of the database presented by Muttoni.13 It can be
seen that for low rotations, the strength limit (VRc0) is gov-
erning whereas for large rotations the power law is limiting
the strength and deformation capacity. When compared to
tests, the scatter is low (comparable to that of the hyperbolic
failure criterion, Figure 1c) with all experimental results
concentrated within a narrow region.

4 | CLOSED-FORM SOLUTION OF
THE CSCT

4.1 | Development of closed-form expressions for
elements without transverse reinforcement

The failure criterion presented in Equation (6) can be used
to calculate the failure load in combination with the para-
bolic load–rotation relationship (Equation (1)) yielding
closed-form solutions of the punching resistance.44 This can
be done by introducing the rotation as a function of the act-
ing shear force Equation (1) into Equation (6) and assuming
ms/mR = VRc/Vflex:

VRc =VRc,0� Vflex

VRc

� �
� ddg

25�km�d �
d
rs
�Es

fy

� �2=3

≤VRc,0; ð9Þ

which leads to:

VRc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRc,0�Vflex

p � ddg
25�km�rs �

Es

fy

� �1=3

≤VRc,0: ð10Þ

The punching strength results thus a function of the
maximum shear capacity (VRc,0) and the flexural strength
(Vflex, shear force associated with full yielding of all radial
and tangential flexural reinforcement13) as well as of other
parameters characterizing roughness, size and strain effects.
In addition, the deformation capacity at failure can also be
calculated from Equations (1) and (10) (assuming ms/mR =
VRc/Vflex) as:

ψRc =
km
25

�rs
d
�ddg
d

� fy
Es

� �1=2

:
VRc,0

Vflex

� �3=4

≤ km�rsd �
fy
Es

� VRc,0

Vflex

� �3=2

ð11Þ

For design purposes, the calculation of the flexural
strength of the slab (Vflex) can be simplified assuming the
following relationship between the flexural strength and the
moment capacity13:

Vflex = a�mR; ð12Þ
where parameter a relates the flexural strength to sectional
moment capacity (it can be taken as 8 for inner columns
according to Muttoni13), and mR can be calculated as:

mR = d2�ρ�fy� 1−
ρ�fy
2�fcp

� �
; ð13Þ

where fcp refers to the plastic compressive strength of con-
crete in uniaxial compression, calculated as fcp = fc(30/fc)

1/3

≤ fc (accounting for the influence of the concrete brittleness
in compression).47 In order to develop simple closed-form
design expressions, Equation (13) can be approximated in
the following manner44:

mR = k1�d2� ρ�fy
� �k2 �fc1−k2 ð14Þ

with k1 = 0.75 and k2 = 0.9. Using the relationships estab-
lished in Equations (12) and (14), the flexural strength Vflex

can thus be rewritten as:

Vflex = a�0:75�d2�ρ0:9�fy0:9�fc0:1: ð15Þ
Furthermore, by replacing Equation (15) into (10)

yields:

VRc

b0�d= 0:55�0:75ð Þ0:5�b0−0:5�d0:5�fc0:25�a0:5� ρ�fy
� �0:45�fc0:05

� 25�km�fy
� �−1=3� ddg

rs
�Es

� �1=3

≤ 0:55�
ffiffiffiffi
fc

p
;

ð16Þ
which eventually leads to:

VRc

b0�d = k3�
ffiffiffiffiffiffiffiffiffi
a� d
b0

r
� Es�ρ�fc�ddgrs

� �1=3

≤ 0:55�
ffiffiffiffi
fc

p
; ð17Þ

where k3 = 0:55�0:75ð Þ0:5� 25�kmð Þ−1=3�f −0:033
c ρ�fy

� �0:117 can
be approximated as k3 = 0.225 (km = 1.2, fc ≈ 30 MPa, ρ �
fy ≈ 5 MPa; low values of the exponents of fc, ρ, and fy lead
to a small influence of these variables on the value of k3).
Considering a constant modulus of elasticity Es

= 200,000 MPa, Equation (17) can finally be written as:

VRc = kb� 100ρ�fc�ddgrs �
� �1=3

�b0�d≤ 0:55�b0�d�
ffiffiffiffi
fc

p
; ð18Þ

where the coefficient kb can be computed as follows:

kb =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�a� d

b0

r
≥ 1: ð19Þ

This coefficient accounts for the effective depth-to-
control perimeter ratio as well as for parameter a (defined in
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Equation (12), relationship between flexural strength and
moment capacity). It enhances the unitary shear strength for
small column sizes and decreases it for large column sizes.
This is physically consistent, defining a transition for fail-
ures in shear in one-way slabs (very large length of the con-
trol perimeter)48,49 and is acknowledged in design codes
(e.g., Reference 7).

It can be noted that Equations (18) and (19) do not
explicitly account for the level of deformation of the slab,
although it can be back calculated by means of
Equation (11). In addition, some of the parameters implied
in the equations (as rs and a) have a physical meaning con-
sistently with the CSCT, and their estimate can be per-
formed with simple geometrical rules for conventional
cases, but refined by means of more detailed analyses upon

necessity (for design of complex structures or for assess-
ment of critical connections).

It shall also be noted that, as a consequence of the
assumptions used to the analytical derivation of the closed-
form expression of Equation (18), some additional consid-
erations have to be accounted for when using it. These
considerations refer to the flexural resistance of squat
members and to the location of its control perimeter and
are explained in the following.

The first consideration (flexural resistance of squat mem-
bers) is related with the use of Equation (13) (simplified with
Equation (14)) to calculate the moment sectional capacity,
which, together with yield-line theory50, allows calculating
the flexural strength of slender slabs. However, the use of
the referred theory to the case of footings has been shown to

TABLE 1 Summary of database containing 121 specimens without transverse reinforcement: rc—radius of a circular column; c—side length of a square
column; d—effective depth; fc—cylinders concrete compressive strength; fy—yielding strength of flexural reinforcement; dg—maximum aggregate size; B—
size of the slab along orthogonal directions

Authors
Number of
tests B (m) d (m) rc (m) c (m) fc (MPa) dg (mm) ρ (%) fy (MPa)

Elstner and Hognestad55 19 1.829 0.114–0.118 – 0.254–0.356 12.8–50.6 25.4–38.1 1.15–3.70 321–409

Kinnunen and Nylander8 10 1.840 0.117–0.128 0.075–0.150 – 24.2–31.0 32 0.65–1.50 434–461

Moe56 7 1.829 0.114 – 0.152–0.254 22.1–26.5 9.5–38.1 1.05–1.14 328–482

Schaefers57 2 1.960 0.113–0.170 0.105 – 21.3–27.1 32 0.55–0.83 450

Tolf58 8 1.270–2.540 0.098-0.200 0.063–0.125 – 22.6–28.2 16–32 0.34–0.81 657–720

Hallgren9 7 2.540 0.194–0.202 0.125 – 84.1–108.8 18 0.33–1.19 596–643

Ramdane59 12 1.700 0.098–0.100 0.075 – 26.9–101.8 10–20 0.58–1.28 550–650

Hassanzadeh60 1 2.540 0.199 0.125 – 28.4 18 0.80 493

Sistonen61 10 1.770–2.470 0.170–0.177 0.101–0.451 – 19.0–25.8 16 0.45–1.17 576–621

Birkle49 3 2.248–3.911 0.124–0.260 – 0.250–0.350 31.4–36.2 14 1.10–1.51 488–531

Guandalini et al16 5 1.500–6.000 0.096–0.456 – 0.130–0.520 27.7–34.7 16 0.32–1.50 520–577

Guidotti28 11 3.000 0.194–0.208 – 0.260 31.5–51.7 8–32 0.76–1.62 510–551

Tassinari62 2 3.000 0.196–0.212 – 0.260 66.3–67.0 16 0.82–1.48 540–552

Fernández Ruiz et al4 1 3.000 0.210 – 0.260 34.0 16 1.50 709

Clément63 3 3.000 0.346–0.35 – 0.220–0.440 31.6–33.9 16 0.75–1.53 520–541

Lips et al64 4 3.000 0.193–0.353 – 0.130–0.520 30.5–36.5 16 1.50–1.63 556–583

Heinzmann et al65 1 4.100 0.294 0.200 – 35.5 32 1.20 577

Inácio et al66 3 1.650 0.101–0.102 – 0.200 35.9–130.1 13.2–13.9 1.24–1.48 523–532

Einpaul et al51 10 1.700–3.900 0.197–0.218 0.042–0.330 0.260 34.2–44.1 16 0.74–1.59 517–542

Drakatos et al67 2 3.000 0.195–0.200 – 0.390 34.3–39.2 16 0.80–1.61 507–593P
121 1.270–6.000 0.096–0.456 0.042–0.451 0.130–0.520 12.8–130.1 4–38.1 0.32–3.70 321–720

TABLE 2 Summary of database with 34 footings without transverse reinforcement subjected to uniform loading: rc—radius of a circular column; c—side
length of a square column; d—effective depth; fc—cylinders concrete compressive strength; fy—yielding strength of flexural reinforcement; dg—maximum
aggregate size; B—size of the footing along orthogonal directions

Authors
Number
of tests

rc
(m) c (m) d (m) B (mm) fc (MPa)

dg
(mm) ρ (%)

fy
(MPa)

Dieterle and
Rostásy68

12 – 0.150–0.450 0.290–0.760 1.500–3.000 20.1–27.3 30–32 0.21–0.89 395–574

Hallgren et al69 2 0.125 – 0.235–0.240 0.850 20.1–26.5 8 0.41 621

Hegger et al52 8 – 0.200 0.295–0.470 1.200–1.800 21.1–36.4 16 0.82–0.86 528–566

Siburg and Hegger53 8 – 0.200–0.300 0.400–0.590 1.200–2.700 19.6–53.3 16 0.29–0.88 515–627

Simões et al27 4 – 0.300–0.450 0.506–0.512 1.590–2.120 29.5–32.1 16 0.74–0.76 517–537P
34 0.125 0.150–0.450 0.235–0.760 1.200–3.000 19.6–53.3 8–32 0.21–0.89 395–627
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have limitations.30 Simões et al30 have used the upper bound
theorem of limit analysis to show that the application of
yield-line theory50 may lead to a significant overestimate of
the flexural capacity of compact slabs and footings without
shear reinforcement. In those cases, the flexural strength has
to be reduced to account for the flexure–shear interaction
resulting from the presence of an inclined strut carrying
shear which reduces the flexural lever arm.30 The assump-
tion that the flexural strength can be approximated as defined
in Equation (15) requires thus a reduction of the longitudinal
reinforcement ratio when applying Equation (18) to the case
of footings or squat slabs without shear reinforcement. A
simple expression for these cases is derived in Appendix and
results in the following relationship:

ρred
ρ

=
1−0:5�ω�rs=rc

1−0:5�ω ≥ 0:5; ð20Þ

where ρred is the reduced longitudinal reinforcement ratio to
be introduced in Equation (18) when applying it to the cases
of footings without transverse reinforcement; ω is the
mechanical reinforcement ratio (ρ � fy/fc); rc is the radius of
a circular column with the equivalent perimeter.

TABLE 3 Summary of the results of critical shear crack theory
(experimental-to-calculated punching strengths) obtained following
different approaches

Specimens
Number
of tests Approach Average

COV
(%)

Slabs 121 Approach (1)a 1.07 8.3

Approach (2)b 1.03 8.6

Approach (3)c 1.04 10.0

Approach (4)d with
a = Vflex/mR

1.03 9.7

Approach (4)d with a = 8
and rs = B/2

1.02 10.6

Footings 34 Approach (3)c with Vflex

calculated with ρred, rs = B/2
0.96 9.4

Approach (4)d with a = 8,
ρred, and rs = B/2

0.95 11.5

Approach (4)d with a = 8, ρred,
and rs = B/2 ≥ 2.5d

1.01 11.7

a Load–rotation relationship based on quadri-linear moment curvature law13

(with the equivalent axisymmetric value of rs calculated from the yield-line
value of Vflex) and hyperbolic failure criterion (Equation (2))13 with ddg of
Equation (7).

b Load–rotation relationship based on quadri-linear moment curvature law13

(with the equivalent axisymmetric value of rs calculated from the yield-line
value of Vflex) and the power-law failure criterion (Equation (6)).

c Closed-form solution function of Vflex (Equation (10) with km = 1.2).
d Closed-form solution function of ρ (Equation (18)).

Average = 1.03

COV = 9.7 %
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The second consideration (location of control perimeter
for squat members) results from the fact that Equation (18)
considers a constant distance of the control perimeter to the
edge of the supported area (control perimeter located at d/2
from the edge). This approach has been shown to be consist-
ent for the case of slender slabs.51 For the sake of simplicity,
the same distance between the column edge and the control
perimeter in the case of footings is also assumed. Neverthe-
less, as shown by Simões et al,30 the location of the control
perimeter for squat members should rather be related to the
inclination of the failure surface, which is actually a function
of geometrical properties. According to this theoretical con-
sideration, with decreasing span-to-effective depth ratio, the
inclination of the failure surface tends to be steeper.30 In
addition, this theoretical consideration has been confirmed
also experimentally.27,52,53 For consistency, the control
perimeter should be shifted to a distance closer than 0.5d in
those cases, leading to lower punching resistances. To keep

the control perimeter at a distance of 0.5d from the column
edge, thus, a lower limit of the distance between the axis of
the supported area to the line of zero radial moment rs has to
be considered. To that aim, it is suggested to adopt rs ≥ 2.5d,
corresponding to the limit case where an angle of the failure
surface of approximately 45� has been observed in the analy-
sis of Simões et al.30

4.2 | Development of closed-form expressions for slab
continuity and compressive membrane action

An interesting consideration of the CSCT and its derived
expressions is that, since the theory is based on a mechani-
cal model, it can be tailored to specific situations by suita-
bly evaluating its mechanical parameters. This is presented
in this section with reference to slab continuity and com-
pressive membrane action. As shown by Einpaul et al,20,21

this effect might have a significant influence on the
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punching behavior and strength of slab–column connec-
tions. This phenomenon is relevant particularly for inner
connections where compressive in-plane forces may
develop around the column area.

The influence of slab continuity and compressive mem-
brane action have been accounted for in the frame of the
CSCT by Einpaul et al,20,21 by modifying the load–rotation
relationship of Equation (1) by means of a factor named kcs

21:

ψ = kcs�km�rsd �
fy
Es

� V
Vflex

� �3=2

: ð21Þ

As justified by Muttoni and Fernández Ruiz,44 factor kcs
can be expressed as a function of the ratio mcr/mR (sup-
ported on the evidence that the confinement at the column
region is provided by the surrounding concrete during the
crack development stage) in the following manner):

kcs = 0:08�mR

mcr

� �3=4

≤ 1; ð22Þ

where mcr refers to the cracking moment per unit length. By
intersecting the modified load–rotation relationship with the
failure criterion, the punching resistance thus results:

VRc = kb� 100ρ�fc� ddg
kcs�rs �

� �1=3

�b0�d≤ 0:55�b0�d�
ffiffiffiffi
fc

p
: ð23Þ

It can be noted that Equation (23) is analogous to
Equation (18), provided that the value of rs is corrected
(reduced) to account for the compressive membrane action.
Considering that the flexural capacity per unit length mR

can be calculated with Equation (14) and that the cracking
moment per unit length can be computed as (assuming a
ratio d/h ≈ 0.9):

mcr =
h2

6
�fct≈ d2

0:92�6 �fct: ð24Þ

The factor kcs can be simplified as follows
(by introducing Equations (14) and (24) into Equation (22)
and rounding exponents and constant values):

kcs ffi 0:08�6�0:92d2�fct �0:75�d2� ρ�fy
� �0:9�fc0:1� �3=4

) kcs = k4�
ffiffiffiffiffiffiffiffiffiffi
100ρ

p � fy
fct

� �3=4
≤ 1:0;

ð25Þ

where the constant k4 = (0.08 � 6 � 0.92 � 0.75)3/4 � (fc/fy)3/40
� ρ7/40 � 100− 1/2 can finally be simplified as k4 = 1/75 (fc ≈
30 MPa, ρ ≈ 0.0075, and fy ≈ 500 MPa; low values of the
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exponents of fc, ρ, and fy lead to a small influence of these
variables on the value of constant k4).

5 | COMPARISON OF CLOSED-FORM
EXPRESSIONS AGAINST EXPERIMENTAL
RESULTS

The accuracy of the CSCT (and more specifically the
closed-form design expressions previously derived in
Equations (10) and (18)) is compared in this section to
available experimental data. For slender slabs, the database
considered is that of Einpaul54 (update of database of Mut-
toni13) but completed with some additional tests. The con-
sidered database comprises a total of 121 slender slabs
without transverse reinforcement4,8,9,16,28,49,51,55–67 (see
Table 1 for details). With respect to footings, a database
accounting for 34 footings without transverse reinforcement
subjected to uniform loading was compiled27,52,53,68,69 (see
Table 2). Only specimens that do not reach their flexural
strength (VR,test < Vflex) are included in the databases, as
Equations (10) and (18) are only addressed to the shear

strength. These databases are consistent with others availa-
ble in the literature (e.g., References 70 and 71).

Several comparisons to the tests are presented in the fol-
lowing (refer Table 3):

• The first approach (1) corresponds to the original formu-
lation of the CSCT by Muttoni,13 accounting for the
hyperbolic failure criterion of Equation (2) and the load-
rotation curve calculated based on the quadri-linear
moment–curvature relationship;

• The second approach (2) corresponds to the power-law
failure criterion (Equation (6)) and the load-rotation
curve of the slab resulting from the integration of the
quadri-linear moment–curvature relationship13;

• The third one (3) refers to the closed-form solution as a
function of the flexural capacity Vflex (Equation (10);
Vflex,red for footings), derived analytically considering
the power-law failure criterion and the simplified load–
rotation curve of Equation (1);

• Finally, the fourth one (4), refers to the closed-form
solution as a function of the flexural reinforcement ratio
ρ (Equation (18); ρred for footings).
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The two first approaches are applied only to slender
slabs, in accordance to the validity of the derivation of the
load-rotation curve based on the quadri-linear moment–
curvature diagrams.13

5.1 | Detailed results for slender slabs

As shown in Table 3, the four approaches yield very similar
results in terms of average measured-to-calculated strengths
and coefficient of variation (COV). Particularly, very similar
results are obtained if, instead of a constant value for param-
eter a (shear force to average strip moment ratio, a ≈ 8),
this value is calculated as defined in Equation (12), with
Vflex determined on the basis of the yield-line theory (see,
e.g., References 13,16,50, and 54).

Figure 7 shows the ratio of experimental-to-predicted
punching strength obtained with the closed-form expression
based on the flexural reinforcement ratio derived from the
CSCT (Equation (18)) for the case of slabs without trans-
verse reinforcement. For this comparison, the value of
parameter a is calculated according to Equation (12) (using
the yield-line theory50 to determine Vflex). The results show
that the closed-form expression derived from the mechanical
model of CSCT yields consistent results (average of
measured-to-calculated values of 1.03 and COV of 9.7%),
without any noticeable trend for the main geometrical and
mechanical properties.

A detailed comparison with selected series is also shown
in Figure 8 for slender slabs. The various plots refer to the
influence of size effect (Figure 8a), the concrete strength
(Figure 8b), the flexural reinforcement ratio (Figure 8c and
f ), the slab slenderness (Figure 8d), and the column size
(Figure 8e). The results show that the various failure
regimes are suitably reproduced by the closed-form expres-
sion and that the trends are finely captured.

5.2 | Detailed results for footings

With respect to footings, all results presented in Table 3 are,
again, similar. With respect to limiting rs/d to 2.5, it can be
noted that this condition is clearly pertinent (with an average
measured-to-calculated strength of 1.01). The results of the
closed-form design expression as a function of the reduced
flexural reinforcement ratio (Equation (18)) are compared in
Figure 9 to the test results considering the lower limit of rs/d
to 2.5 (loads applied inside the control perimeter not contri-
buting to the acting shear force). It can be seen that the
results are consistent and trend free for the main geometrical
and mechanical parameters. As for the slender slabs, the vari-
ous failure modes are again suitably addressed (Figure 10) as
well as the influence of the individual parameters.

6 | CONCLUSIONS

In this paper, the CSCT is reviewed and used to derive
closed-form expressions to calculate the punching shear

strength of slabs and footings without transverse reinforce-
ment. The main conclusions of this paper are listed below:

1. The mechanical model of the CSCT can account for
different situations where punching failure governs the
strength. At failure, localization of the strains in a criti-
cal shear crack occurs. The kinematics is governed by
a rotation and a shear deformation, and the resulting
stresses on the failure surface form an inclined com-
pression strut (whose strength decays for increasing
openings of the critical shear crack and lower crack
roughness).

2. Slender and squat members are shown to have a differ-
ent significance of the rotational and shear deformation
components at failure. This also influences the failure
surfaces and associated strengths. Yet, both can be con-
sistently addressed by the CSCT mechanical model.

3. On the basis of the distinct behavior of slender and
squat members, it is justified to adopt a failure criterion
characterized by a power law limited by a maximum
achievable punching strength.

4. The power-law failure criterion in combination with a
load–rotation relationship for the slab allows deriving
closed-form expressions for calculation of the punch-
ing resistance. The derived expressions provide a clear
view of the influence of every parameter and enable
the calculation of the punching shear resistance in a
direct manner, being therefore suitable for design
purposes.

5. The closed-form design expressions can be consistently
extended to special cases (as for instance the influence
of membrane action), by introducing in the load–
deformation relationship the necessary considerations.
This allows deriving physically consistent design
expressions for these cases

6. The closed-form expressions derived based on CSCT
show an excellent agreement with the experimental
results both for slender slabs and squat members (foot-
ings) without transverse reinforcement. In addition, the
influence of different mechanical and geometrical prop-
erties is shown to be consistently considered by the pro-
posed expressions.

NOTATION

B side length of a square slab
Es modulus of elasticity of flexural reinforcement
V punching shear force
Vflex shear force associated with full yielding of both

radial and tangential flexural reinforcement
Vflex,red shear force associated with full yielding of both

radial and tangential flexural reinforcement con-
sidering flexural–shear interaction

VR punching shear strength
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VRc concrete contribution for punching shear strength
VR,test experimental punching shear strength
VRc,0 maximum achievable punching shear strength of

concrete
Qflex flexural strength
Qflex,red reduced flexural strength
a ratio between acting shear force and average

moment in the support strip
b0 length of control perimeter
c side length of a square column
d effective depth (distance from the centroid of the

flexural reinforcement to the outermost com-
pressed fiber)

dg maximum aggregate size
dg0 reference aggregate size (dg0 = 16 mm for normal

weight concrete13)
ddg reference value of the roughness of the critical

shear crack
fc concrete compressive strength measured in

cylinder
fce effective concrete compressive strength
fcp plastic compressive strength of concrete
fcc enhanced concrete compressive strength
fy yield strength of flexural reinforcement
h slab thickness
km, kv, kfc, k1, k2, k3 factors
kb shear gradient enhancement factor
kcc factor enhancing concrete compressive strength

due to triaxial compression
kcs factor accounting for slab continuity and mem-

brane action
mcr cracking moment
mR average unitary flexural strength in the support

strip
mR reduced sectional moment capacity
ms average unitary moment for calculation of the

bending reinforcement in the support strip
rc radius of a circular column
r0 radius of the failure surface at the level of the

flexural reinforcement
rs distance of the column axis to the line of contra-

flexure of bending moments
rq distance of the column axis to the line of load

introduction
w crack width
w0 initial crack opening due to flexural

deformations
x height of compression zone due to bending
x increased height of compression zone due to

flexure–shear interaction
β secant inclination of the failure surface
δ crack sliding
η global effectiveness factor
ηfc effectiveness factor accounting for concrete brit-

tleness in compression

ηw effectiveness factor accounting for the state of
deformations

φ concrete friction angle
γ angle between failure surface and crack sliding

vector
ρ flexural reinforcement ratio
ρred reduced flexural reinforcement ratio
ψ rotation
ψRc rotation at failure
σ normal stresses due to aggregate interlocking
τ shear stresses due to aggregate interlocking
ω mechanical reinforcement ratio

REFERENCES

1. Fédération internationale du béton, fib Bulletin 12: Punching of structural
concrete slabs, Technical report, Lausanne, Switzerland, ISSN 1562-3610,
ISBN 2-88394-052-5; 2001, 314.

2. Polak MA. Punching Shear in Reinforced Concrete Slabs, SP-232, American
Concrete Institute, Farmington Hills, MI, USA; 2005:302.

3. Fédération internationale du béton, fib Bulletin 81: Punching shear of struc-
tural concrete slabs: Honoring Neil M. Hawkins. Lausanne, Switzerland,
ISSN 1562-3610, ISBN 978-2-88394-121-2, 2017:378.

4. Fernández Ruiz M, Muttoni A, Kunz J. Strengthening of flat slabs against
punching shear using post-installed shear reinforcement. ACI Struct J.
2010;107(4):434-442.

5. Fernández Ruiz M, Mirzaei Y, Muttoni A. Post-punching behavior of flat
slabs. ACI Struct J. 2013;110:801-812.

6. Eurocode 2. Design of Concrete Structures—General Rules and Rules for
Buildings, EN 1992-1-1. Brussels, Belgium: CEN European Committee for
Standardization; 2004:225.

7. American Concrete Institute Committee 318. Building Code Requirements
for Reinforced Concrete (ACI 318-14). Farmington Hills, MI: American
Concrete Institute; 2014.

8. Kinnunen S, Nylander H. Punching of concrete slabs without shear rein-
forcement. Trans Roy Inst Technol. 1960;158:112.

9. Hallgren M. Punching Shear Capacity of Reinforced High Strength Con-
crete Slabs [Doctoral thesis], Department of Structural Engineering, Royal
Institute of Technology, Stockholm, Sweden, TRITA-BKN, Bulletin 23,
1996, 206.

10. Broms CE. Punching of flat plates—a question of concrete properties in
biaxial compression and size Effect. ACI Struct J. 1990;87(3):292-304.

11. Broms CE. Tangential strain theory for punching failure of flat slabs. ACI
Struct J. 2016;113(1):95-104.

12. Muttoni, A, Schwartz, J. Behaviour of beams and punching in slabs without
shear reinforcement. Presented at: IABSE Colloquium; 1991, 62; Zurich,
Switzerland, 703-708.

13. Muttoni A. Punching shear strength of reinforced concrete slabs without
transverse reinforcement. ACI Struct J. 2008;105(4):440-450.

14. Muttoni A. Schubfestigkeit und Durchstanzen von Platten ohne Querkraft-
bewehrung [Shear and punching strength of slabs without shear reinforce-
ment] [in German], Beton- und Stahlbetonbau, 98, 2003, 74-84.

15. Fernández Ruiz M, Muttoni A. Applications of the critical shear crack the-
ory to punching of R/C slabs with transverse reinforcement. ACI Struct J.
2009;106:485-494.

16. Guandalini S, Burdet O, Muttoni A. Punching tests of slabs with low rein-
forcement ratios. ACI Struct J. 2009;106(1):87-95.

17. Fernández Ruiz M, Muttoni A. Size effect on punching shear strength: Dif-
ferences and analogies with shear in one-way slabs. In: Punching shear test
of structural concrete slabs: Honoring Neil M. Hawkins, ACI-fib Interna-
tional Symposium, fib Bulletin 81, 2017, 59-72.

18. Muttoni A, Fernández Ruiz M, Bentz E, Foster SJ, Sigrist V. Background
to the Model Code 2010 shear provisions—Part II punching shear. Struct
Concr. 2013;14(3):204-214.

19. Muttoni A, Fernández Ruiz M. The Levels-of-Approximation approach in
MC 2010: applications to punching shear provisions. Struct Concr.
2012;13(1):32-41.

14 A MUTTONI ET AL.



20. Einpaul J, Fernández Ruiz M, Muttoni A. Influence of moment redistribu-
tion and compressive membrane action on punching strength of flat slabs.
Eng Struct. 2015;86:43-57.

21. Einpaul J, Ospina CE, Fernández Ruiz M, Muttoni A. Punching shear
capacity of continuous slabs. Farmington Hills, MI, USA: ACI Struct J;
2016:861-872.

22. Maya Duque LF, Fernández Ruiz M, Muttoni A, Foster SJ. Punching
shear strength of steel fibre reinforced concrete slabs. Eng Struct.
2012;40:83-94.

23. Faria D, Einpaul J, Pinho Ramos A, Fernández Ruiz M, Muttoni A. On
the efficiency of flat slabs strengthening against punching using exter-
nally bonded fibre reinforced polymers. Constr Build Mater.
2014;73:366-377.

24. Belletti B, Walraven JC, Trapani F. Evaluation of compressive membrane
action effects on punching shear resistance of reinforced concrete slabs.
Eng Struct. 2015;95(2015):25-39.

25. Vecchio FJ, Collins MP. The modified compression-field theory for rein-
forced concrete elements subjected to shear. ACI J. 1986;83(2):219-231.

26. Fernández Ruiz M, Muttoni A, Sagaseta J. Shear strength of concrete mem-
bers without transverse reinforcement: a mechanical approach to consist-
ently account for size and strain effects. Eng Struct. 2015;99:360-372.

27. Simões JT, Bujnak J, Fernández Ruiz M, Muttoni A. Punching shear on
compact footings with uniform soil pressure. Struct Concr. 2016;17(4):
603-617.

28. Guidotti R. Poinçonnement des planchers-dalles avec colonnes superposées
fortement sollicitées [Doctoral thesis]; 2010; EPFL, Lausanne, Switzer-
land, 230.

29. Braestrup MW, Nielsen MP, Jensen BC, Bach F. Axisymetric punching of
plain and reinforced concrete, Report No. 75, Structural Research Labora-
tory, Technical University of Denmark, 1976, 33.

30. Simões JT, Faria DMV, Fernández Ruiz M, Muttoni A. Strength of rein-
forced concrete footings without transverse reinforcement according to limit
analysis. Eng Struct. 2016;112:146-161.

31. Walraven JC. Fundamental analysis of aggregate interlock. ASCE J Struct
Eng. 1981;107(11):2245-2270.

32. Hordijk DA. Tensile and tensile fatigue behaviour of concrete, experiments,
modelling and analyses. Heron. 1992;37(1):79.

33. Jiang D-H, Shen J-H. Strength of concrete slabs in punching shear. J Struct
Eng. 1986;112(12):2578-2591.

34. Bortolotti L. Punching shear strength in concrete slabs. ACI Struct J.
1990;87(2):208-219.

35. Kuang JS. An Upper-bound Plastic Solution for Punching Shear Failure of
Concrete Slabs, Report No. CUED/D-Struct/TR.136, Engineering Depart-
ment, University of Cambridge, UK; 1991, 41.

36. Salim W, Sebastian WM. Plasticity model for predicting punching shear
strengths of reinforced concrete slabs. ACI Struct J. 2002;99(6):827-835.

37. Nielsen MP, Hoang LC. Limit Analysis and Concrete Plasticity. 3rd ed.
Boca Raton, FL: CRC Press; 2011.

38. Nielsen MP, Braestrup MW, Jensen BC, Bach F. Concrete Plasticity: Beam
Shear—Shear in Joints—Punching Shear, Danish Society for Structural Sci-
ence and Engineering. Copenhagen, Denmark: Structural Research Labora-
tory, Technical University of Denmark, Special Publication; 1978:129.

39. Braestrup MW. Punching shear in concrete slabs. Presented at: IABSE Col-
loquium, Plasticity in Reinforced Concrete, No. 28, Copenhagen, Denmark;
1979, 115-136.

40. Hoang LC. Punching Shear Analysis according to the Crack Sliding
Model—Slabs without Shear Reinforcement, in: Proceedings of the Danish
Society for Structural Science and Engineering, Copenhagen: Danish Soci-
ety for Structural Science and Engineering; 77, 3, 2006, 69-133.

41. Fédération internationale du béton. fib Model Code for Concrete Structures.
Vol 2013. Germany: Ernst & Sohn; 2010:434.

42. SIA. Code 262 for Concrete Structures. Zürich, Switzerland: Swiss Society
of Engineers and Architects; 2013:102.

43. Muttoni A, Fernández Ruiz M. MC2010: the critical shear crack theory
as a mechanical model for punching shear design and its application to
code provisions, fédération internationale du béton, Bulletin 57; 2010,
31-60.

44. Muttoni A, Fernández Ruiz M. The Critical Shear Crack Theory for punch-
ing design: from a Mechanical Model to Closed-Form Design Expressions.
In: Punching shear test of structural concrete slabs: Honoring Neil M. Haw-
kins, ACI-fib International Symposium, fib Bulletin 81, 2017, 237-252.

45. Sherwood EG, Bentz EC, Collins MP. Effect of aggregate size on beam-
shear strength of thick slabs. ACI Struct J. 2007;104(2):180-190.

46. Muttoni A, Fernández Ruiz M. Shear strength of members without trans-
verse reinforcement as function of critical shear crack width. ACI Struct J.
2008;105(2):163-172.

47. Muttoni A. Die Andwendbarkeit der Plastizitätstheorie in der Bemessung
von Stahlbeton [The applicability of the theory of plasticity in the design of
reinforced concrete] [in German], Institut für Baustatik und Konstruktion,
Report No. 176, ETH Zürich; 1990, 158.

48. Van der Voet AF, Dilger WH, Ghali A. Concrete flat plates with well-
anchored shear reinforcement elements. Can J Civ Eng. 1982;9(1):107-114.

49. Birkle G. Punching of Flat Slabs: The Influence of Slab Thickness and Stud
Layout [PhD Thesis]; University of Calgary, Calgary, Canada; 2004, 217.

50. Johansen KW. Yield-line Theory. London: Cement and Concrete Associa-
tion; 1962:182.

51. Einpaul J, Bujnak J, Fernández Ruiz M, Muttoni A. Study on influence of
column size and slab slenderness on punching strength. ACI Struct J.
2016;113(1):135-145.

52. Hegger J, Ricker M, Sherif A. Punching strength of reinforced concrete
footings. ACI Struct J. 2009;106:706-716.

53. Siburg C, Hegger J. Experimental investigations on punching behaviour of
reinforced concrete footings with structural dimensions. Struct Concr.
2014;15:331-339.

54. Einpaul J. Punching Strength of Continuous Flat Slabs [Doctoral thesis],
EPFL, Lausanne, Switzerland, No. 6928; 2016, 209.

55. Elstner RC, Hognestad E. Shearing strength of reinforced concrete slabs.
ACI Journal Proceedings 1956;53–2:29-58.

56. Moe J. Shearing strength of reinforced concrete slabs and footings under
concentrated loads. PCA. 1961;D47, 135.

57. Schaefers U. Construction, Dimensioning and Safety with Respect to
Punching Shear of Reinforced Concrete Flat Plates in the Vicinity of Inter-
nal Columns [In German: Konstruktion, Bemessung und Sicherheit gegen
Durchstanzen von balkenlosen Stahlbetondecken im Bereich der Innenstüt-
zen]. Vol 357. Berlin, Germany: Deutscher Ausschuss für Stahlbeton; 1984,
83, in German.

58. Tolf P. Influence of the slab thickness on the strength of concrete slabs
at punching. Tests with circular slabs [ In Swedish: Plattjocklekens
inverkan på betongplattors hallfasthet vid genomstansning. Försök med
cirkulära plattor [in Swedish], Royal Institute of Technology, Depart-
ment of Structural Mechanics and Engineering, Bulletin 146, Stockholm,
Sweden; 1988, 64.

59. Ramdane K-E. Punching shear of high performance concrete slabs. In: Pro-
ceedings of the Fourth International Symposium on Utilization of High-
Strength/High Performance Concrete. Vol 3. Paris, France: Laboratoire
Central des Ponts et Chaussées; 1996:1015-1026.

60. Hassanzadeh G. Strengthening of Bridge Slabs with Respect to Punching:
Test Results [In Swedish: Förstärkning av brobaneplattor pa pelaremed
hänsyn till genomstansning “Redovisning av provningar”], Report 41.
Stockholm, Sweden: Royal Institute of Technology; 1996, 134.

61. Sistonen E, Lydman M, Huovinen S. Teräsbetonilaatan lävistyskapasiteetin
laskentakaavan geometrinen malli [The geometrical model of the calcula-
tion formula of the punching shear capacity of the reinforced concrete slab]
[in Finnish], Report No. 69, Helsinki University of Technology, Espoo, Fin-
land, 1997, 95.

62. Tassinari L. Poinçonnement symétrique des dalles en béton armé avec
armature de poinçonnement [Doctoral thesis], EPFL, Lausanne, Switzer-
land, No. 5030, 2011, 197.

63. Clément T. Influence de la précontrainte sur la résistance au poinçonnement
des dalles en béton armé [Doctoral thesis], EPFL, Lausanne, Switzerland,
No. 5516, 2012, 224.

64. Lips S, Fernández Ruiz M, Muttoni A. Experimental investigation on
punching strength and deformation capacity of shear-reinforced slabs. ACI
Struct J. 2012;109:889-900.

65. Heinzmann D, Etter S, Villiger S, Jäger T. Punching tests on reinforced
concrete slabs with and without shear reinforcement. ACI Struct J.
2012;109(6):787-794.

66. Inácio M, Ramos AP, Lúcio V, Faria DV. Punching of high strength con-
crete flat slabs—experimental investigation. Eng Struct. 2015;103:275-284.

67. Drakatos I-S, Muttoni A, Beyer K. Internal slab-column connections
under monotonic and cyclic imposed rotations. Eng Struct.
2016;123:501-516.

A MUTTONI ET AL. 15



68. Dieterle H, Rostásy F. Deutscher Ausschuss für Stahlbeton [Load-carrying
behaviour of isolated reinforced concrete foundations of square columns]
[in German]. Tragverhalten quadratischer Einzelfundamente aus Stahlbe-
ton. 1987; 1: 91-387.

69. Hallgren M, Kinnunen S, Nylander B. Punching shear tests on column foot-
ings. Nordic Concr Res. 1998;21:22.

70. Walkner R. Kritische Analyse des Durchstanznachweises nach EC2 und
Verbesserung des Bemessungsansatze [Critical review of punching shear
according to EC2 and improving the design approach] [in German] [Doc-
toral thesis]: Innsbruck University; 2014.

71. Siburg C. Zur einheitlichen Bemessung gegen Durchstanzen in Flach-
decken und Fundamenten [For uniform punching shear design of flat slabs
and foundations] [in German] [Doctoral thesis], RWTH Aachen; 2014.

72. Cantone R, Muttoni A. Punching Shear Tests of Flat Slabs. École Polytech-
nique Fédérale de Lausanne, Structural Concrete Laboratory, Lausanne,
Switzerland, Internal report; 2017.

APPENDIX

A simplified expression to account for a flexure–shear inter-
action in squat members subjected to uniform pressure is
derived in this Appendix for practical purposes. Figure 11
(a) shows a square footing with a side length B subjected to
a uniform soil pressure. A square column with a side length
c is also considered. The yield-line mechanism governing in
this case is considered to be characterized by the formation
of a yield line along the edge of the column (see Figure 11
(c)), where the sectional moment capacity calculated in
accordance to Equation (13) is reached. According to this
mechanism, which corresponds to a pure flexural behavior,
the height of the compression zone x is obtained by equal-
ling the horizontal forces developing in the section:

x
d
=ω=

ρ�fy
fcp

; ðA1Þ

where ω represents the mechanical reinforcement ratio.
Figure 11(b) shows a possible stress field developing along
the axis of the footing (considering that tensile strength is
neglected). The stress field consists only of inclined con-
crete struts which are horizontally equilibrated by the flex-
ural reinforcement. With increasing flexural reinforcement
ratio, the area of the inclined struts increases (as well as the
region of triaxial stresses developing under the footing).
The height of this region becomes very significant and can
considerably decrease the lever arm between the horizontal
compressive (concrete) and tensile (reinforcement) forces.
In addition, provided that tensile strength is neglected, the
entire horizontal tensile force has to be equilibrated by the
horizontal compressive force under the column. Therefore,
for practical purposes and taking into consideration the
stress field illustrated in Figure 11(b), a sectional analysis as
the one shown in Figure 11(d) can be adopted to calculate a
reduced sectional moment capacity mR as follows:

mR = ρ�fy�d2� 1−
x
2�d

� �
; ðA2Þ

where x represents an increased compression zone account-
ing for the flexure–shear interaction, which can be com-
puted from the horizontal equilibrium in the section as
(tensile force developing along the width of the footing
B equilibrated by the compressive force developing along
the width of the column c with an enhanced concrete com-
pressive strength due to triaxial compression fcc = kcc�fc):

x
d
=

ρ�fy
kcc�fcp �

B
c
≤ 1: ðA3Þ
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Eq. (30)12

FIGURE 11 (a) Square footing with square column subject to uniform soil pressure; (b) stress field obtained assuming zero tensile strength for concrete;
(c) pure flexural failure mode; (d) simplified flexural-shear failure mode; (e) reduction of flexural reinforcement ratio accounting for flexural-shear
interaction
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A reduced reinforcement ratio ρred accounting for the
decrease of the lever arm due to flexure–shear interaction
can be calculated equalling the moment capacity established
in Equation (13) and the reduced moment capacity defined
in Equation (A2) as follows:

mR =mR ) ρ� 1−
ρ�fy

2�kcc�fc �
B
c

� �
= ρred� 1−

ρred�fy
2�fc

� �
:

ðA4Þ

The solution of interest of the second degree parabola
defined in Equation (A4) is given by:

ρred
ρ

=
1
ω
� 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2�ω� 1−

ω

2
� B
kcc�c

� �s !
≥ 0:5 ðA5Þ

Equation (A5) is nevertheless not convenient for practical
purposes. An approximated solution can be simply obtained
based on Equation (A4) (assuming that dimension B in
Figure 11(a) represents 2rs and replacing dimension c by
2πrc /4, where rc represents the radius of a circular sup-
ported area with equal perimeter), resulting into:

ρred
ρ

=
1−0:5�ω�rs=rc

1−0:5�ω ≥ 0:5 ðA6Þ

where ω is the mechanical reinforcement ratio defined in
Equation (A6) (note that, according to its derivation, the
limit rs/d ≥ 2.5 does not apply in this equation). Both
exact (considering a beneficial effect of triaxial compres-
sion with kcc ≈ 1.3) and approximated solutions yield very
similar results, as shown in Figure 11(e). The simplified
expression (Equation (A6)) can therefore be applied in
practical cases to reduce the longitudinal reinforcement
ratio contributing to the punching strength of compact
slabs and footings.
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