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A mechanical model is presented for predicting the moment- 
rotation relationship of interior slab-column connections without 
transverse reinforcement when subjected to seismically induced 
drifts. The model accounts explicitly for the three load-transfer 
actions between slab and column contributing to the unbalanced 
moment resistance—that is, eccentric shear, flexure, and torsion. 
The moment resistance and deformation capacity are deduced from 
the intersection of the moment-rotation curve with a failure criterion 
that is based on the Critical Shear Crack Theory and distinguishes 
between monotonic and cyclic loading conditions. The model 
predicts both the moment resistance and the deformation capacity of 
tests found in the literature well. Based on the model predictions, it is 
shown that the rotation capacity of slab-column connections in flat-
slab systems decreases with increasing gravity load and increasing 
effective depth. Larger column size to effective depth ratios lead to 
increased rotation capacity while the top reinforcement ratio has little 
influence on the rotation capacity. It is also shown that cyclic loading 
results in smaller rotation capacities than monotonic loading, which 
is more pronounced for small gravity loads.

Keywords: Critical Shear Crack Theory; eccentric punching; flat slab; 
interstory drift; moment transfer; slab-column connections.

INTRODUCTION
The structural system of reinforced concrete flat slabs 

(two-way slabs without beams) is widely used in building 
construction during the last decades, as it offers significant 
advantages to all involved stakeholders (owners, engineers, 
architects, constructors), such as large open spaces, reduced 
story heights, simplified formwork, reduced construc-
tion time, and cost. Although slab-column systems are not 
expected to contribute to the lateral resistance of the struc-
ture due to their low horizontal stiffness, the slab-column 
connection must have the capacity to follow the seismically 
induced lateral displacements of the building while main-
taining the capacity to transfer the vertical loads from the 
slab to the columns. Otherwise, brittle punching failure of 
the slab may occur and the deformation capacity of the entire 
building is limited by the deformation capacity of the slab-
column connection if the building is not designed to resist 
progressive collapse.

When a slab-column connection is subjected to a combi-
nation of unbalanced moment and shear force, three different 
slab actions are contributing to the moment resistance1 
(Fig. 1): 1) eccentric shear force, 2) flexure; and 3) torsion. 
As soon as the behavior of the slab-column connection 
subjected to an unbalanced moment becomes nonlinear, it is 
rather difficult to obtain an accurate and realistic estimation 
of the contribution of the different resisting mechanisms to 
the overall capacity of the slab-column connection. This is 

accentuated by the fact that the aforementioned resistance 
mechanisms are associated with different failure modes.

The ACI 318-142 Building Code provisions for the design 
of slab-column connections to resist seismically induced 
drifts are currently based on a simplified eccentric shear-
transfer model for moment capacity and on an empirical 
relationship for deformation capacity. Punching failure for a 
flat slab without transverse reinforcement due to vertical load 
alone (concentric punching) occurs when the shear force at 
the control perimeter (assumed at a distance d/2 from the 
column face) reaches a critical value. When designing for 
a combination of vertical load and unbalanced moment, the 
latter is considered to be transferred partly by the eccentric 
shear force and partly by flexure. To compute the moment 
capacity, punching failure is assumed to occur when the 
maximum shear stress due to the vertical load (assumed to be 
constant along the control perimeter) and due to the unbal-
anced moment (assumed to vary linearly along the control 
perimeter faces that are subjected to torsion [Fig. 1]) reaches 
the same limit value as for concentric punching (0.33√fc for 
fc in MPa [4√fc for fc in psi]). The deformation capacity is 
estimated using an empirical relationship that is based on the 
work by Pan and Moehle,3 which links the drift capacity to 
the gravity-induced load. No calculation of induced moments 
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Fig. 1—Internal actions in vicinity of column for vertical 
loading and inserted moment due to earthquake-type loading 
according to theory of elasticity.
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is required when computing the deformation capacity. The 
provisions for the design of slab-column connections in the 
presence of seismic moments according to ACI 318-142 are 
presented in Appendix 1.* A trilinear relationship between 
interstory drift and gravity-induced shear has been proposed 
by Hueste and Wight.4 For the same gravity load, it predicts 
larger drift capacities than the provisions by ACI 318-14.2

In 2009, Broms5 proposed a model for calculating 
the critical connection rotation that leads to punching 
failure. Broms assumes that punching occurs when the 
concrete compression strain in the tangential direction 
at the column face reaches a critical value that depends 
on the height of the compression zone and the concrete 
compressive strength. Broms’ method provides only esti-
mates of rotation and moment at failure and not the entire 
moment-rotation relationship. In addition, Broms’ model 
is limited to slab-column connections subjected to mono-
tonic loading only.

In this article, a mechanical model is proposed for 
computing the entire moment-rotation relationship of 
slab-column connections subjected to seismic loading. 
This model allows for the computation of the contribu-
tion of each resisting mechanism—that is, eccentric shear, 
flexure, and torsion. To do so, the slab is divided into n 
sector elements and equilibrium is first formulated for each 
sector element and then for the entire slab. This permits the 
connection of local deformations of each sector element 
to the global rotation of the slab-column connection. The 
presented approach considers, in a first step, the slab region 
until 0.22L from the column axis (defined as slab-column 
connection region, L corresponds to the distance from 
midspan to midspan). In a second step, it can be combined 
with an effective beam width model for the slab region 
outside 0.22L to transform the connection rotation to the 
interstory drift. Drift-induced punching failure is deter-
mined by combination of the proposed model for computing 
the moment-rotation relationship with the failure criterion 
of the Critical Shear Crack Theory6 (CSCT). The failure 
criterion distinguishes between monotonic loading, for 
which shear stress redistribution between sector elements 
is considered, and cyclic loading, for which shear stress 
redistribution is neglected.

RESEARCH SIGNIFICANCE
ACI 318-142 adopts different approaches for calculating the 

unbalanced moment capacity of a slab-column connection and 
its deformation capacity under seismic actions. The influence 
of cyclic loading on the deformation capacity is accounted 
for empirically, while its influence on the moment capacity is 
overlooked. Therefore, there is a need for a mechanical model 
that correctly predicts the unbalanced moment, the corre-
sponding connection rotation, and the deformation capacity 
accounting for cyclic loading conditions.

*The Appendix is available at www.concrete.org/publications in PDF format, 
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request.

SLAB DEFORMATION RELATED TO 
INTERSTORY DRIFT

For evaluating the seismic performance of buildings 
in terms of displacements, structural engineers typically 
use the interstory drift ψst—that is, the relative horizontal 
displacement between two adjacent floors divided by the 
story height. In structural systems of flat slabs and columns, 
the deformation of the slab and the column both contribute 
to the interstory drift

	 ψst = ψcol + ψslab	 (1)

where ψcol and ψslab are the contributions of column deforma-
tion and slab deformation to the interstory drift, respectively.

In laboratory tests, the specimen size is often limited to 
the hogging moment area under gravity loads. It is usually 
assumed that the limit of this area is located at a distance of 
r = 0.22L from the column axis,7 where L is the midspan-
to-midspan distance. In reality, the slab region inside and 
outside r = 0.22L are contributing to the rotation due to slab 
deformation

	 ψslab = ψscc + ψos	 (2)

where ψscc and ψos are the rotation due to the deformation of 
the slab-column connection (defined as slab region inside 
r = 0.22L) and the rotation due to the deformation of the 
outer portion of the slab (outside r = 0.22L up to r = 0.50L), 
respectively.

To assess the contribution of ψscc and ψos to the slab defor-
mation ψslab, a slab element with continuity boundary condi-
tions and subjected to horizontal loads was analyzed using 
the finite element program SAP2000 (CSI8). Continuity 
was provided through restraining of the slab edges parallel 
to the lateral force against rotation about an axis parallel to 
the edge while the slab edges perpendicular to the lateral 
force were constrained to have equal deflections and rota-
tions about an axis parallel to the edge. The contribution 
of each component is the rotation at the central node of the 
slab-column connection after the assignment of rigid body 
conditions to all remaining components. In this model, the 
column is modeled by a rigid beam element and the slab 
by layered shell elements to which nonlinear material laws 
are assigned. The layered shell formulation adopted for 
the numerical modeling uses smeared reinforcement. The 
analysis is nonlinear static and yields the moment-rotation 
relationship due to flexural deformations of the slab but 
cannot account for punching failure. Details with respect 
to the numerical modeling can be found in Appendix 2. 
Figure 2 illustrates both contributions ψscc and ψos to the 
slab rotation ψslab for a flexural reinforcement ratio of 1.50% 
in the hogging moment area. Because the model captures 
only flexural failure, Fig. 2 also shows horizontal lines that 
correspond to the moment at punching failure according to 
ACI 318-14.2 For this horizontal load level, the slab-column 
connection rotation ψscc contributes approximately 75% to 
80% to the total slab rotation ψslab, the remaining part being 
contributed by the slab region outside r = 0.22L.
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Contribution of slab-column connection to 
slab deformation

This section analyzes characteristics of the slab deforma-
tions inside 0.22L using the SAP2000 analysis presented 
in the previous section. When a slab-column connection 
is subjected to an unbalanced moment, the local slab rota-
tions vary along the perimeter r = 0.22L. The location of 
the investigated points is described by the angle φ, which 
is measured with regard to the bending axis y (Fig. 3(a)). 
Figure 3(a) shows the variation of the slab rotation with φ for 
vertical loads alone (black line) and for three different hori-
zontal load levels (colored lines). When only vertical loads 
are applied, the system is approximately axis-symmetric and 
the slab rotation is almost constant. When an unbalanced 
moment about the y-axis is introduced, the slab rotation 
varies with φ and the relationship between maximum local 
slab rotation (for φ = π/2) and minimum slab rotation (for φ 
= 3π/2) follows approximately a sinusoidal law. This obser-
vation has been confirmed experimentally for slab-column 
connections subjected to constant shear force and increasing 
moment (Drakatos et al.7). This relationship will be assumed 
in the mechanical model to connect the local slab rotations to 
the global rotation of the slab-column connection.

Figure 3(b) shows the profile of slab deflections along the 
x-axis for the same load levels as in Fig. 3(a). It shows that the 
profile of slab deflections is approximately linear between r 
= d (slab effective depth) and r = 0.22L. This means that the 
curvature in radial direction of the slab-column connection 
in the region r > d can be neglected. The assumption of a 
rigid behavior of this region6,9 is thus also confirmed for the 
case of slab-column connections with unbalanced moment.

Contribution of slab region outside 0.22L to 
slab deformation

The slab part outside r = 0.22L contributes approximately 
a quarter to the total slab rotation (dashed-dotted lines, 
Fig. 2). To estimate this contribution using a simple mechan-
ical approach, an effective beam width model is employed. 
In this model, the column is modeled as rigid but with its 
actual dimensions. The slab is modeled by a beam to which 
a width αl2 is assigned, where l2 is the transverse span.10 The 

width reduction coefficient α can be derived assuming the 
same rotational stiffness for the full-width slab (real system) 
and the equivalent beam (fictitious system)

	 α
ψ

= ⋅ ⋅
⋅

M l
l E hslab c

1

2
3

1
	 (3)

where M is the moment transferred to the slab-column 
connection; l1 is the distance between columns (equal to 
L); Ec is the modulus of elasticity of concrete; and h is the 
slab thickness. The slab rotation ψos is then obtained from a 
simple beam model where the column and the slab inside r 
= 0.22L are modeled as rigid. The slab outside r = 0.22L is 
modeled as an elastic beam with a width αl2 and height h. For 
the calculation of the reduction coefficient α (Eq. (3)), the 
unbalanced moment M and the corresponding rotation due 
to slab deformation ψslab are obtained from the moment-ro-
tation relationship of the slab-column connection, which is 
presented in the next section. Note that cracking is directly 
accounted for by the width reduction coefficient α. For the 
validation, M and ψslab were taken from the layered shell 
element model and the rotation ψos, which was obtained 
by the effective beam model, was compared to that of the 
finite element model (Fig. 2). The difference in rotations was 
smaller than 10%.

The slab outside r = 0.22L also has an effect on the 
moment capacity by providing a confining effect.11-13 This 
is, however, not considered in the analytical model presented 
in this paper.

MOMENT-ROTATION RELATIONSHIP
This section presents the theoretical background of the 

proposed model for the moment-rotation relationship of a 
slab-column connection subjected to a seismically induced 
moment. The model is derived from the axisymmetric model 
developed by Kinnunen and Nylander9 and Muttoni6 for 
slabs subjected to gravity loads. In the original model, the 
slab is divided into an even number n of sector elements 
and the region inside the shear crack. Because that model is 

Fig. 2—Contribution of slab deformation inside and outside 
r = 0.22L to interstory drift for flexural reinforcement ratio 
equal to 1.50% (L = 6.8 m, h = 0.25 m, c = 0.39 m, column 
assumed to be very stiff). (Note: 1 m = 3.28 ft.) Fig. 3—(a) Local slab rotations at varying angles; and (b) 

slab deflections along x-axis for different lateral load levels.
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axisymmetric, the equilibrium formulation can be reduced 
to one sector element. For the case of a seismically induced 
moment, several modifications of the axisymmetric analyt-
ical model are introduced, which are presented first. Next, 
equilibrium is formulated for a sector element and then 
for the entire slab specimen until r = 0.22L. It follows the 
approach for computing the slab-column connection rota-
tion. To compute the total slab rotation, also the deformation 
of the slab part outside r = 0.22L needs to be considered, 
which is presented in the final part of this section.

Assumptions
As already shown in Fig. 3(a), the slab rotation of the 

sector elements follows approximately a sinusoidal law with 
regard to the location described by angle φ. The slab rotation 
of the sector element at angle φ with regard to the bending 
axis y is therefore

	 ψ ϕ
ψ ψ ψ ψ

ϕ( ) sin( )=
+

+
−max min max min

2 2
	 (4)

where ψmax and ψmin are the maximum slab rotation for φ = 
π/2 and the minimum slab rotation for φ = 3π/2, respectively.

Moreover, experimental evidence shows that radial curva-
tures concentrate in the slab area between column axis and shear 
cracks.6 In case of slab-column connections with unbalanced 
moment M, tests by Drakatos et al.7 showed that the inclina-
tion of critical shear cracks depends on the ratio of unbalanced 
moment M to shear force V (Fig. 4(a) and (b)), subsequently 

referred to as eccentricity e. Based on these observations, it is 
assumed that the radius r0 of the critical shear crack is equal to 
e =M/V, but not smaller than rc + d (Reference 6)

	 r0 = e ≥ rc + d	 (5)

Past experimental evidence showed that reversed cyclic 
loading affects the ultimate rotation capacity but does not 
affect to a significant degree the moment-rotation relation-
ship of slab-column connections before failure.7,14 For this 
reason, the present study assumes that the response enve-
lope under cyclic loading is represented by the monotonic 
moment-rotation curve.

Equilibrium of sector elements (local level)
The assumption of different rotations at different angles 

(Fig. 5(a)) from the bending axis implies that the moment is 
introduced from the column to the slab not only by a flex-
ural moment but also by a torsional moment and an eccentric 
shear force. This can be demonstrated by formulating equi-
librium for a sector element as shown in Fig. 5.

It is further assumed that no shear transfer occurs between 
adjacent sector elements. In reality, the shear force will 
not be zero. However, nonlinear analyses of slab-column 
connections have shown that the shear flow follows approx-
imately radial lines from the column to the slab perimeter.

Analytical considerations have shown that the torsional 
curvature at the sector element face χrt is maximized at the 
bending axis (φ = 0 and φ = π) and the column proximity. 
Tests on slab-column connections7 have shown that torsional 
cracking occurs rather early, resulting in rapid reduction of 
the torsional rigidity. For this reason, this paper neglects 
the moments Mtor(φ – Δφ/2) and Mtor(φ + Δφ/2). Mtan(φ – 
Δφ/2) and Mtan(φ + Δφ/2) are the integrals of the tangen-
tial moments at the faces of each sector element (Fig. 5(a)). 
These moments can be determined directly as a function of 
the assumed rotation and a quadrilinear moment-curvature 
relationship6

M m r r EI r r

EI

R y y

TS

tan ( ) ) )( ) ln( ln(ϕ ψ ϕ

χ

= − + −

+

0 1 1

1               rr r m r r

EI r r
y cr cr

s cr

1 1

0

− + −

+ ( ) −               ψ ϕ ln ln(( ) )

	 (6)

Fig. 4—Critical shear crack inclination for drift-induced 
punching under: (a) monotonic; and (b) cyclic loading 
conditions for different ratios of maximum eccentricity to 
column size (adapted from Drakatos et al.7).

Fig. 5—Internal forces acting on different slab elements: (a) outside shear crack (hogging slab half); and (b) inside shear crack.
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where EI0 and EI1 are the slab stiffness before and after 
cracking; mcr and mR are the cracking moment and moment 
capacity, respectively, per unit width; χTS is the curvature due 
to the tension stiffening effect; and r0, ry, r1, rcr, and rs are the 
radii of the critical shear crack, the yielded zone, the zone 
in which cracking is stabilized, the cracked zone, and the 
circular isolated slab element, respectively. The operator 〈x〉 
is x for x ≥ 0 and 0 for x < 0. Equation (6) for the calcula-
tion of the tangential moment Mtan(φ) is taken directly from 
the analytical model proposed by Muttoni.6 For the case of 
seismically induced deformations, the local slab rotation ψ 
depends on the angle φ of the sector element with regard to 
the direction of seismic loading and the radius r0 of the crit-
ical shear crack is updated as a function of the eccentricity 
(refer to Eq. (5)) to take into account the fact that the shear 
force becomes less determinant as eccentricity increases. 
Therefore, the integral of the radial moment for a sector 
element at angle φ and r = r0 is

	 Mrad(φ,r0) = mr(φ)r0∆φ	 (7)

where mr(φ) is the radial moment per unit width at r = r0 as 
function of the radial curvature.6

If φi is the angle formed by the axis of bending and the 
bisector of the i-th sector element, the shear force that can be 
carried by this sector element is derived by moment equilib-
rium in the radial direction with respect to the center of the 
column with radius rc

	
∆

∆V
r r

M r M r M Mi
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(8)

The moment equilibrium in the tangential direction gives 
the torsional moment that is carried by the connection for the 
i-th sector element

	M r M Mtor i i i( , ) cos(tan tanϕ ϕ
ϕ

ϕ
ϕ ϕ

0 2 2 2
= +
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
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− −
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∆ ∆ ∆ )) ( , )+M rtor i sϕ 	

(9)

The radial and torsional moments at the perimeter of each 
sector element Mrad(φi,rs) and Mtor(φi,rs) (Eq. (8) and (9), 
respectively) are obtained using an Effective Beam Width 
Method, as will be shown in the following section.

Equilibrium of shear forces at the column edge gives the 
total shear force acting on the connection for the load step k

	 V Vk
i

n

i= ∑
=1

∆ 	 (10)

Moment equilibrium at the column edge gives the total 
moment acting on the connection (parallel to the unbalanced 
moment) for the load step k

	M M r M r V rk
i

n

rad i i tor i i i c i= ∑ + +
=1

0 0( , ) sin( ) ( , ) cos( ) sin( )ϕ ϕ ϕ ϕ ϕ∆[[ ]	

(11)

The three terms of Eq. (11) represent the contribution of 
flexure, torsion, and eccentric shear force to the total unbal-
anced moment.

Global equilibrium of slab specimen
For the case of uniformly distributed vertical loading 

alone, formulating the equilibrium for one sector element 
is equivalent to formulating the equilibrium for the entire 
circular slab because ψmax = ψmin= ψv (Fig. 6(a)). If a seismic 
moment is added, the slab rotations vary between sector 
elements and therefore equilibrium has to be formulated 
locally for each sector element and globally for the entire 
circular slab (Fig. 6(b)).

The unbalanced moment is applied about the y-axis. The 
adoption of the kinematic law of Eq. (4) implies symmetry 
about the x-axis (φ = π/2 and φ = 3π/2) and therefore the 
moment about the x-axis is always zero. To ensure global 
equilibrium about the y-axis, the following procedure is 
adopted: For each load step k, a new value of ψmax is chosen. 
To determine all local slab rotations by means of the sinu-
soidal law, one needs to choose a value ψmin, which is iter-
ated such that the sum of all shear forces ΔVi is equal to the 
shear force V that is applied to the slab-column connection. 
The shear force V is assumed as constant because it results 
from gravity loads. Because lateral loads induce rather insig-
nificant axial forces in interior columns, this assumption is 
more representative for interior bays. On the other hand, for 
exterior bays, the axial force variation due to lateral load 
should be considered, which can be done effectively using 
the proposed model. To obtain the moment-rotation curve, 

Fig. 6—Assumed deformed shape of slab specimen under: 
(a) vertical load6; and (b) vertical load and imposed lateral 
deformation.
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the radius r0 of the shear crack is adapted at each load step k 
as it is assumed to be equal to the attained eccentricity

	 ek = Mk/Vk	 (12)

The aforementioned iterative procedure can also be used if 
Mk or ek rather than Vk is constant—that is, situations that can be 
found when constant horizontal loads act on columns or when 
slabs with unequal spans are subjected to vertical load alone.

Slab-column connection rotation
The previous section yields a relationship between the 

unbalanced moment M and the local slab rotations ψ(φ). To 
determine a relationship between unbalanced moment and 
slab-column connection rotation ψscc, a relationship between 
the local rotations ψ(φ) and the connection rotation ψscc 
is needed.

Figure 7(a) shows the deformed shape of the slab analyzed 
previously until midspan (0.50L). Because the proposed 
model assumes that only the cone inside the shear crack 
deforms and each element outside the shear crack behaves 
in the radial direction as a rigid body, the deformed shape 
of the top slab surface is linear only outside the shear crack 
(Fig. 6(b)). The connection rotation ψscc can be defined using 
either local slab rotations (ψscc.rot) or local slab deflections 
(ψscc.defl). If the definition is based on rotations, ψscc.rot can 
be calculated as the average of the maximum and minimum 
local rotations ψmax and ψmin (Fig. 7(a))

	 ψ
ψ ψ

scc rot. =
−max min

2
	 (13)

If the connection rotation ψscc.defl is computed from deflec-
tions, one obtains

	 ψ scc defl r c. =
−

+
∆ ∆

∆
max min

2
	 (14)

where Δmax and Δmin are, respectively, the maximum and 
minimum local slab deflections at a distance Δr + c/2 = 
0.22L from the column center along the x-axis (points A and 
A’ in Fig. 7), where c is the column size. The definition of the 
slab-column connection rotation with respect to test config-
urations of previous experimental campaigns on isolated 
specimens is shown in Appendix 3.

Rotation due to slab deformation outside slab-
column connection

The presented model for the moment-rotation relationship 
considers only the slab region inside 0.22L (ψscc). To obtain 
an accurate prediction of the total slab deformation ψslab, 
the rotation ψos should also be accounted for. This can be 
performed by calculating the radial and tangential moments 
Mrad(φi, rs) and Mtor(φi, rs) at the perimeter of each sector 
element. For this purpose, a beam that connects the perim-
eter of the considered sector element with the perimeter of 
the sector element of the opposite column (Fig. 7(b)) is used. 
When the slab is subjected to a rotation ψ(φi) at Node 1 and 
ψ(2π – φi) at Node 2, the moment at Node 1 can be found 
using the elastic solution
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where the bracketed term represents the projection of the 
slab rotation to the y-axis (perpendicular to the axis of each 
beam); L(φi) is the length of the beam that connects the 
sector element at angle φi with the sector element at angle 
2π – φi; and EIk – 1(φi) is its stiffness calculated using the 
Effective Beam Width Method

	 EI
M L

k
k

slab k

i i
-

-

. -

( ) sin( ) sin( )
1

1

1 12 4
=

ψ
ϕ ϕ ϕ∆

	 (16)

where Mk-1 and ψslab.k-1 is the unbalanced moment and the 
total rotation due to slab deformation at the load step k-1. 
The last fraction of Eq. (16) is inserted so that the sum of the 
width of all effective beams yields the width of one single 
effective beam that represents the slab action (Eq. (3) and 
Appendix 2).

The radial and torsional moments Mrad(φi, rs) and Mtor(φi, rs) 
at the perimeter of each sector element can be found by 
projecting the moment calculated using Eq. (15) to the radial 
and tangential direction, respectively

	 Mtor(φi, rs) = My,EBW(φi)cos(φi) 	 (17)

	 Mrad(φi, rs) = My,EBW(φi)sin(φi)	 (18)

Fig. 7—(a) Deformed shape of slab until midspan according 
to finite element analysis and proposed model for combined 
vertical and lateral loads; and (b) Effective Beam Method 
for calculating contribution of outer slab part to total 
deformation.
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FAILURE CRITERION
In the following, two failure criteria for drift-induced 

punching are proposed, which are both based on the failure 
criterion of the CSCT.6 One failure criterion is applied to slabs 
subjected to monotonic loading and the other to slabs subjected 
to cyclic loading. The criteria differ with regard to the assumed 
shear force redistribution. Shear redistribution from sector 
elements with higher rotations to sector elements with smaller 
rotations has been previously15 found to significantly influ-
ence the punching strength and corresponding rotation of slabs 
loaded and/or reinforced in a non-axisymmetric manner.

For slabs subjected to monotonic loading, it is assumed 
that failure occurs when the shear force reaches the shear 
resistance for the hogging slab half. This criterion is denoted 
by CSCT(mono). For slabs subjected to cyclic loading, shear 
redistribution is neglected and failure is assumed to occur 
when the sector subjected to the largest slab rotation reaches 
the CSCT-failure criterion. This is denoted by CSCT(cyc). 
In the following, the two failure criteria are described.

The failure criterion CSCT(cyc) applied to cyclically 
loaded slabs predicts smaller rotation capacities than the 
failure criterion CSCT(mono) applied to monotonically 
loaded slabs. Cyclic loading leads to an accumulation of 
plastic strains and therefore to an increase in crack opening 
with each cycle. If symmetric cycles are applied, ψmin 
increases with increasing number of cycles. For the same 
slab rotation ψscc, ψmax is therefore larger and so are the 
crack widths of the hogging slab half, which in turn lead 
to a reduced shear force redistribution between adjacent 
sector elements. To account for this phenomenon implicitly, 
different failure criteria are applied to monotonically and 
cyclically loaded slabs. This implicit approach is chosen 
because the analytical model does not account for the effect 
of the loading history on the moment-rotation relationship.

Approach accounting for shear stress 
redistribution (CSCT(mono))

Based on the work of Sagaseta et al.15 on nonaxisymmetric 
punching, it is assumed that failure of monotonically loaded 
slabs occurs when the sum of the shear forces acting on the 
sector elements of the hogging slab half (0 ≤ φ ≤ π) is equal 
to the sum of the shear resistance of these sector elements

	 V v r d dR hog R c. ( )( ( ))= ∫ ′+
0

π
ϕ ϕ ϕ	 (19)

where rc′ is the nominal radius for shear calculation, which 
for square columns is adjusted to give the same perimeter 
(that is, rc′ = 2c/π), and vR(φ) is the shear resistance per unit 
length in MN/m
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where fc is the concrete compressive strength; dg is the 
maximum aggregate size; and dg.0 is the reference aggregate 
size, which is assumed to be equal to 16 mm (0.63 in.). For 

imperial units (psi [in.]), the factor 0.75 has to be replaced by 
9. Note that the effective depth d changes with φ to account 
for the different effective depths for bending around the x- 
and y-axis. One can either apply a cosinusoidal interpola-
tion for intermediate angles or use an average value for all 
angles. The former is applied for the calculations presented 
in this paper.

Approach based on maximum rotation (CSCT(cyc))
In this article, the CSCT(cyc) approach is used for slabs 

subjected to cyclic moments with increasing amplitude. This 
approach neglects a possible redistribution of the shear force 
to adjacent sector elements, which are subjected to smaller 
rotations than the maximum rotation ψmax. It is assumed that 
punching failure occurs when the shear force that is carried 
by the compression strut (that is developed along the shear 
crack) of the sector element with the maximum rotation 
ψmax is equal to the shear resistance of this sector element. 
According to the CSCT (Muttoni6), the shear resistance of 
the sector element subjected to the maximum rotation ψmax 
can be computed as
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where b0(Δφ) is the part of the critical section that belongs to 
the sector element with the maximum rotation. The critical 
section is assumed to be at a distance of d/2 from the column 
face. Here again, for fc expressed in psi, the factor 0.75 has 
to be replaced by 9.

All calculations presented herein were conducted using 8, 
16, and 32 sector elements and no difference was observed 
in the obtained results. The choice of 16 sector elements 
(that is, Δφ = 22.5 degrees) is optimal, as it fits rather well 
with radial cracking patterns from experiments and is not 
computationally too expensive.

VALIDATION OF PROPOSED MODEL
The proposed model is compared to tests on slab-column 

connections under combined vertical load and increasing 
moment that are reported in the literature. Each test 
campaign measured the slab-column rotation differently. 
Appendix 3 outlines for each campaign how the measured 
quantities are estimated with the analytical model. More 
information on the selected tests is provided in Appendix 4 
(Tables 1,7,16-20 2,7,19,21-35 and 3; tests under constant eccen-
tricity). The predictions of the proposed model for moment 
and deformation capacity are shown in tabulated form in 
Appendix 5 (Tables 47,16-20 and 57,19,21-35 using the failure 
criterion CSCT(mono) for monotonic tests and CSCT(cyc) 
for cyclic tests. In addition, the predictions of ACI 318-142 
and the model of Broms5 are presented in the same tables. 
In the following, the performance of the proposed model to 
predict the moment strength and the deformation capacity 
of slab-column connections is discussed. The evaluation is 
presented for square isolated slab specimens without trans-
verse reinforcement supported on square columns subjected 
to constant vertical load and quasi-static monotonic or 
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cyclic moment. Tests on slabs subjected to constant eccen-
tricity and monotonically increasing shear force (or equally 
moment) are not presented in the main part of the paper 
because the present study focuses on the seismic behavior of 
slab-column connections. Predictions for these tests can be 
found in Appendix 6 (Table 6). For all isolated specimens, 
the moment-rotation relationship was calculated assuming 
that each sector element extends until the inflection point 
under uniform vertical loading (rs = 0.22L). For tests using 
setup (c) (according to Fig. A6 in Appendix 3) where the 
vertical load was applied on the slab surface, the radius of 
the specimen is equal to 0.50L. For these cases (represented 

by square markers), the radial and tangential moments 
acting on the perimeter of the sector elements were not set 
to zero and effective beams were used to bridge the distance 
between 0.22L and 0.50L to account for the influence of the 
outer region of the slab on the moment-rotation response. 
For all other cases (represented by round markers), 0.22L 
corresponds to the specimen radius and, therefore, the radial 
and tangential moments acting on the slab perimeter were 
set to zero.

Moment capacity
The moment capacity predicted by ACI 318-14,2 Broms’ 

model,5 and the proposed model are compared to the exper-
imentally obtained moment capacities in Fig. 8 and 9. The 
abscissas of the graphs represent the normalized shear 
strength—that is, the shear force at failure divided by b0d√fc, 
where d is the average effective slab depth, fc is the concrete 
compressive strength, and b0 is the control perimeter located 
at d/2 from the face of the column, calculated with rounded 
corners.36 Note that the normalized shear force V/b0d√fc 
should be multiplied by 3 when using SI units and divided 
by 4 when using imperial units to obtain the Gravity Shear 
Ratio (GSR) defined according to ACI 318-14.2

Figure 8(a) shows the comparison for monotonic tests. On 
average, ACI 318-142 yields rather conservative estimates of 
the moment capacity (ratio of predicted to observed values: 
0.64 ± 0.15). Broms’ model5 shows better performance 

Fig. 8—Moment capacity predictions for specimens 
subjected to constant vertical load and monotonically 
increasing moment according to: (a) ACI 318-142; (b) 
Broms5; and (c) CSCT(mono).

Fig. 9—Moment capacity predictions for specimens 
subjected to constant vertical load and cyclically increasing 
moment according to: (a) ACI 318-142; and (b) CSCT(cyc).
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(Fig. 8(b)) with respect to the mean value of the ratio Mpred/ 
Mexp (1.04) but the results are largely scattered (COV = 
22%). The proposed model combined with the CSCT(mono) 
(Fig. 8(c)) yields higher prediction accuracy than Broms’ 
model5 with respect to the average ratio of Mpred/Mexp (1.02) 
and significantly reduced scatter (COV = 11%).

The predictions of ACI 318-142 for the moment strength of 
slabs subjected to cyclically increasing moment (Fig. 9(a)) 
display decreased conservatism compared to the predictions 
for slabs subjected to monotonically increasing moment 
(Fig. 8(a)) (0.72 ± 0.18). The proposed model combined 
with CSCT(cyc) (Fig. 9(b)) offers higher prediction accu-
racy with respect to both average ratio and scatter of 
predicted to observed moment capacities Mpred/Mexp (0.96 ± 
0.07). Note that Broms’ model is not applicable to cyclically 
loaded slabs.5

Deformation capacity
For seismic loading, the deformation capacity is as 

important as the moment capacity. Figures 10 and 11 present 
the predictions of ACI 318-14,2 Broms’ model,5 and the 
proposed model as ratio of calculated to measured rotation 
of the slab-column connection at peak moment. Although 
the conventional definition of the rotation capacity of struc-
tural members accounts for a reduction of 20% in strength, 
due to the brittle nature of the punching failure, this can be 

approximated by the rotation at maximum strength. The tests 
were conducted under constant shear force and monotoni-
cally (Fig. 10) or cyclically (Fig. 11) increasing moment. 
Broms’ model5 is only compared to monotonic tests and 
ACI 318-142 only to cyclic tests. Monotonic tests had all 
been performed on slab specimens of the size 0.44L x 0.44L. 
Cyclic tests had, however, partly been conducted on slab 
specimens of the size 1.0L x 1.0L. In this case, the total slab 
rotation ψslab was computed using the Effective Beam Width 
Method described previously.

For monotonic tests, Broms’ model5 (Fig. 10(a)) overesti-
mates in average the rotation capacity and the prediction is 
also associated to a large scatter (1.64 ± 0.60). The proposed 

Fig. 10—Predictions of connection rotation at peak moment 
for specimens subjected to constant vertical load and mono-
tonically increasing moment according to: (a) Broms5; and 
(b) CSCT(mono).

Fig. 11—Predictions of slab deformation at peak moment 
for specimens subjected to constant vertical load and cycli-
cally increasing moment according to: (a) ACI 318-142; (b) 
Hueste and Wight4; and (c) CSCT(cyc).
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model (CSCT(mono)) (Fig. 10(b)) provides conservative 
predictions and the scatter is reduced (0.91 ± 0.20) when 
compared to Broms’ model.5

For the slab rotation of slabs subjected to constant shear 
force and cyclically increasing moment, ACI 318-142 
(Fig.  11(a)) provides in average conservative predictions 
with rather high scatter (0.73 ± 0.35). The model proposed by 
Hueste and Wight4 (Fig. 11(b)) gives more precise average 
predictions but with similar scatter (1.05 ± 0.36). The 
CSCT(cyc) provides slightly conservative predictions and 
the scatter is reduced (0.95 ± 0.12) when compared to ACI 
318-142 and the model of Hueste and Wight4 (Fig. 11(c)).

DISCUSSION
Seismic rotation capacity

The proposed model is, in its current form, deforma-
tion-based and therefore integration in force-based design 
procedures is rather difficult. However, deformation-based 
models are steadily gaining significant popularity within the 
framework of performance-based seismic design that is of 
great importance for earthquake engineering. This section 
discusses the sensitivity of the rotation capacity of slab-
column connections to several parameters. Figure 12 shows 
the predicted slab rotation ψslab at peak moment according to 
the analytical model. The drift limit of ACI 318-142 and the 
drift limit proposed by Hueste and Wight4 are also shown in 
the same graphs. All graphs of Fig. 12 show that the larger 
the gravity-induced shear, the smaller the rotation capacity of 
slab-column connections, as has been observed by others.3-

5,37 The proposed model accounts for the effect of cyclic 
loading through the failure criterion (CSCT(cyc) against 
(CSCT(mono)). Figure 12(a) shows that the predicted defor-
mation capacity under cyclic loading is between 5 and 45% 
smaller than for monotonic loading. The reduction in rotation 
capacity due to cyclic loading is more important for smaller 
gravity loads, confirming prior experimental observations.7

The model confirms Broms’ observation that the rota-
tion capacity decreases with increasing size of the slab 

(Fig. 12(b)) with the slab span L and the column size c being 
increased proportionally to the effective depth d. Although 
the top reinforcement ratio significantly influences the local 
slab rotations, its effect on the rotation capacity of the slab-
column connection is less pronounced (Fig. 12(b)). The 
column size has a significant effect on the rotation capacity. 
For the same gravity load, larger column size to effective 
depth ratio c/d confers higher rotation capacity (Fig. 12(b)).

The drift limit of ACI 318-142 for flat slabs represents a 
safe approach for a slab with d = 120 mm (4.7 in.). However, 
a slab with d = 240 mm (9.4 in.) does not reach the rotation 
capacity predicted by ACI 318-142 for a gravity load ratio 
GSR < 0.55 and > 0.7 (Fig. 12(b)). For GSR > 0.7, this obser-
vation is supported by experimental data (refer to Table 5). 
This is expected because the drift limit of ACI 318-142 is 
based on experimental research on slabs with thickness h ≤ 
152 mm (6 in.).

If a minimum rotation capacity—for instance, 0.5%—
is required for the slab-column connection, the 120 mm 
(4.7 in.) slab meets this requirement for every gravity load 
value (as long as GSR < 1). For the 240 mm (9.4 in.) slab, 
the gravity load ratio GSR has to be limited to 0.7 to reach a 
drift of 0.5%. If the building is designed for a drift value of 
2.0%—a value that is often quoted as drift limit for RC wall 
buildings—the GSR must be smaller than 0.35 for slabs with 
d = 120 mm (4.7 in.), which is close to the value proposed by 
Hueste and Wight4 (GSR < 0.36). For slabs with d = 240 mm 
(9.4 in.), the GSR must be limited to 0.22. This discussion 
accounted only for the contribution of the slab deformations 
to the interstory drift. The effective interstory drift capacity 
will be larger than the calculated slab rotation because the 
column deformation will also contribute to the interstory 
drift capacity (Eq. (1)).

CONCLUSIONS
This article presents a mechanical model for the 

moment-rotation relationship of slab-column connections 
without transverse reinforcement that are subjected to 

Fig. 12—Predicted slab rotation at peak moment and allowable drift limit according to ACI 318-142 and Hueste and Wight4 
(c = 2d; fc = 30 MPa [4350 psi]; and fy = 460 MPa [67 ksi]): (a) influence of loading conditions (cyclic versus monotonic) (L 
= 35d; dg = 16 mm [0.63 in.]); (b) influence of slab effective depth and reinforcement ratio on seismic rotation capacity (L = 
35d; dg = 16 mm [0.63 in.]); and (c) influence of column size on seismic rotation capacity (dg = 16 mm [0.63 in.]).
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gravity loads and seismically induced lateral deformations. 
The model accounts explicitly for the three different load-
transfer actions between slab and column—that is, eccentric 
shear, flexure, and torsion. The failure criterion of the Crit-
ical Shear Crack Theory (CSCT)6 is adapted to predict the 
moment and rotation capacity of the slab-column connec-
tion. The effect of cyclic loading is considered by neglecting 
shear force redistribution between sector elements of the 
hogging slab half. The model was validated against 18 
monotonic tests and 35 cyclic tests from 22 test campaigns 
reported in the literature. The comparison showed that the 
model predicts both moment and rotation capacity with a 
small bias and significantly smaller variability than existing 
analytical or empirical models. The model is used to inves-
tigate the sensitivity of the rotation capacity of slab-column 
connections to various parameters:

1. The model confirms that the rotation capacity of 
slab-column connections reduces with increasing gravity 
shear ratio.

2. The model also confirms the experimental finding that 
cyclic loading leads to smaller slab rotation capacities than 
monotonic loading. In addition, the smaller the gravity load, 
the larger the reduction in rotation capacity due to cyclic 
loading.

3. It is shown that an increase of the slab effective depth 
(slab span to effective depth ratio L/d and column size to 
effective depth ratio c/d maintained constant) leads to a 
significant reduction in rotation capacity (size effect on 
rotation capacity). For this reason, empirical models for the 
rotation capacity of slab-column connections should not be 
applied to larger slabs than those used for the calibration of 
the empirical model.

4. The column size has a significant effect on the rota-
tion capacity. For the same GSR (gravity shear ratio), larger 
column size to effective depth ratio c/d leads to a higher 
rotation capacity.

5. While the influence of the top reinforcement on the 
moment capacity is paramount, its influence on the rotation 
capacity of the slab-column connection is rather small.
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1 

APPENDIX 1 1 

ACI-318 provisions for moment transfer in slab-column connections 2 

Itis assumed that a fraction of the unbalanced moment (equal to the coefficient γv) is resisted 3 

by the eccentric shear force mechanism. The shear stresses due to the unbalanced moment M 4 

are superimposed to the shear stresses due to vertical loads V: 5 

 6 
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 7 

where b0,ACI is the length of the control perimeter (located at a distance of d/2 from the column 8 

face), jd is the distance between the centroid and edge of the critical perimeter, and Jc is the 9 

polar moment of inertia of the critical perimeter. 10 

The total maximum shear stress vR acting on the control perimeter is: 11 

 12 

vR= min ቊ0.17·ቆ1+
2

βc

ቇ ,0.083· ቆ2+
αs·d

b0,ACI
ቇ ,

1

3
ቋ ·ටfc (A.2) 

 13 

where βc is the ratio of long to short side of the column and αs is a parameter equal for 40 for 14 

interior slab-column connections, 30 for exterior slab-column connections, and 20 for corner 15 

slab-column connections. The slabs tested in this program are controlled by the third term of 16 

Eq. A.2. 17 

According to ACI-318 the unbalanced moment cannot be larger than the moment resisted by 18 

flexure by the hogging and sagging reinforcement (mR,hog and mR,sag, respectively) over a width 19 

equal to c+3h. The maximum unbalanced moment can therefore be calculated using the 20 

following formula: 21 

 22 



2 

Mmax=minቐ
vR-

V

b0,ACI·d

γv·jd
·Jc,

(mR,hog+mR,sag)·ሺc+3·hሻ

1-γv
ቑ (A.3) 

 1 

ACI-318Error! Reference source not found. is the only code that imposes drift limitations for slab-2 

column connections. Based on the study by Pan and MoehleError! Reference source not found. the 3 

maximum admissible drift (in rad) is a function of the applied shear force on the slab-column 4 

connection: 5 

 6 

ψst,u= max ൜0.005, 0.035-0.05·
V

VR
ൠ (A.4) 

 7 

where VR is the punching strength of the slab-column connection according to Eq. A.2. 8 

 9 

APPENDIX 2 10 

Numerical analyses 11 

To simulate the behavior of an internal slab-column connection, an element L x L with 12 

continuity boundary conditions (Fig. A1(a)) was analyzed using the finite element program 13 

SAP2000 (CSIError! Reference source not found.). The moment at the slab-column connection was 14 

inserted through incrementally increasing lateral loads at the top of the column stub while 15 

monitoring the rotation at the slab-column node. A uniform gravity pressure qV was applied at 16 

the slab surface to simulate the vertical loads. The slab was modeled using nonlinear layered 17 

shell elements with a Mindlin-Reissner formulation to include transverse shear deformations. 18 

Only elastic shear deformations were included; the model could therefore only predict the 19 

nonlinear flexural response. Fourteen integration points were used over the height of the slab. 20 

The unconfined concrete model by Mander et al.38 and the model by Park and Paulay39 were 21 

used for modeling the nonlinear behavior of concrete and reinforcing steel, respectively. 22 
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Perfect bond between concrete and reinforcing bars was assumed. The tensile strength of the 1 

concrete was assumed to be zero since using a non-zero stress-strain law for tension resulted 2 

in considerable convergence issues in SAP2000. The column member was modeled as rigid 3 

and was pinned at the base (δx,y,z = 0) and free at the top. The slab edges parallel to the x axis 4 

were restrained against rotation about the same axis (θx = 0) whereas the other edges were 5 

constrained to have the same vertical displacement (δz) and rotation about the y axis (θy) as 6 

shown in Figure A1(a). Since the column is rigid (ψcol = 0, Fig. A1(a)), the slab rotation (ψr<0.22L 7 

+ ψr>0.22L) is equal to the interstory drift ψst. 8 

For the analyzed example, the column size c was 390 mm [15.4’’], the slab thickness h was 9 

250 mm [9.8’’] and the specimen size L was 6.8 m [22’ 4’’]. The reinforcement ratio activated 10 

by lateral forces in each direction was equal to 0.75% in the zone of the slab near the column 11 

(1.5 m from the column’s center) and 0.5% in the middle strip. Bottom reinforcement was 12 

provided in both directions around the column, with a ratio equal to 50% of the top 13 

reinforcement ratio. The quasi-permanent vertical loads consisted of 6.25 kN/m2 [130.6 psf] of 14 

self-weight of the slab, 1.00 kN/m2 [20.9 psf] superimposed load and 0.60 kN/m2 [12.5 psf] 15 

quasi-permanent live load. Under this load combination, the vertical load acting on an interior 16 

slab-column connection was approximately 40% of the punching strength according to 17 

ACI318-14Error! Reference source not found., using mean strength values. The assumed concrete 18 

compressive strength was 32 MPa [4641 psi] and the yield and maximum tensile stress of the 19 

reinforcing steel were 550 MPa [79.8 ksi] and 680 MPa [98.6 ksi], respectively. 20 

Figure A1(b) shows the established effective beam width model to calculate the contribution 21 

of the slab region outside 0.22L to the slab deformation rotation ψslab. The only differences 22 

between the models shown in Figure A1(a) and (b) lie on the use of beam members instead of 23 

shell elements, distribution of the gravity loads per unit length instead of unit area and modeling 24 

of the beam part inside 0.22L with high stiffness. 25 
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Fig. A1 – Deformed shape of (a) slab element L x L with continuity boundary conditions and 

(b) effective beam width model with high stiffness for r <0.22L. 
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APPENDIX 3 9 

Test setups for experimental investigation of flat slabs under seismically-induced 10 

deformations 11 

For tests on a single interior slab-column connection different test setups were developed 12 

concerning the slab and column boundary conditions as well as the way lateral loads were 13 

simulated. However, all test setups can be assigned to one of the following three schemes (Fig.  14 

A2): 15 

 Test setup (a): the unbalanced moment is introduced by an eccentric vertical load and by 16 

restraining the vertical displacement of the slab ends (Fig. A2). 17 

θ = 0 x δ    = 0 x,y,z 
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 Test setup (b): the unbalanced moment is introduced by applying unequal vertical loads 1 

to the ends of the slab and by restraining the horizontal displacement of the column stub 2 

ends (Fig. A2 and A3). 3 

 Test setup (c): the unbalanced moment is introduced by applying a horizontal force to 4 

the top column stub and by restraining the vertical displacement of the slab edges (Fig. 5 

A2 and A3). The vertical load is applied either by jacks underneath the column stub 6 

(monotonic tests - Fig. A2) or by weights on the slab surface (cyclic tests - Fig. A3). 7 

The setup configuration adopted in each test campaign is indicated in column 1 of Tables 1 and 8 

2 (Appendix 4), after the year of publication of the associated article. 9 

 

Fig. A2  – Test setup configurations used in previous experimental campaigns for slab-

column connections with monotonic moment transfer (Drakatos et al.Error!  Reference  source  not 

found.). 

 10 

Fig. A3  – Test setup configurations used in previous experimental campaigns for slab-

column connections with cyclic moment transfer. 
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 1 

In the following, the definition of the slab-column connection rotation for the setups that are 2 

most suitable for simulating seismically-induced deformations (setups (b) and (c)) is briefly 3 

discussed. The deformed shape of the slab for each setup is also shown in the following 4 

sections. The adopted numerical method is presented in Appendix 2. 5 

 6 

Setup (b) 7 

For setup (b), the deformed shape of the slab under vertical loads, lateral loads and combined 8 

vertical and lateral loads is shown in Figure A4. The deformed shape assumed by the proposed 9 

model is also shown in the same figure. 10 

Fig. A4 – Setup (b): Deformed shape of slab according to finite element analysis and the 

proposed model. 

 11 

Therefore, for this setup configuration the slab-column connection rotation can be calculated 12 

either based on rotations: 13 

 
ψscc.rot=

ψmax-ψmin

2
=
Δmax- Δmin

2·Δr
 (A.5)

or on deflections: 14 
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 ψscc.defl=
Δmax- Δmin

2∙Δr+c
 (A.6)

Finite element analyses have shown that, for this setup configuration, calculation of the slab-1 

column connection rotation on the basis of deflections provides more realistic estimation of the 2 

interstory drift of an internal connection of the reference slab-column frame (Drakatos et 3 

al.Error! Reference source not found.). This definition was therefore used both for the experimental peak 4 

connection rotations (Appendix 4) and the predicted peak connection rotations (Appendix 5) 5 

for the slabs tested using this setup. 6 

 7 

Setup (c) 8 

For setup (c) the deformed shape of the slab depends on the way the vertical loads are applied: 9 

For vertical loads applied by jacks underneath the column stub (Fig. A5) the deformed shape 10 

resembles the deformed shape for setup (b) (Fig. A4); for vertical loads applied on the slab 11 

surface (Fig. A5) the deformed shape is significantly different since the slab region between r 12 

=0.22L and 0.50L contributes to the slab deformation. 13 

 14 

Fig. A5  – Setup(c) with vertical load applied on the column: Deformed shape of slab 

according to finite element analysis and the proposed model. 
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According to the proposed model the slab-column connection rotation based on rotations is: 1 

 ψscc.rot=
ψmax-ψmin

2
=

(Δmax.abs+ψscc∙Δr)

2∙Δr
-
(Δmin.abs-ψscc∙Δr)

2∙Δr
=

(Δmax.abs-Δmin.abs)

2∙Δr
+ψscc (A.7)

The connection rotation based on deflections is: 2 

 ψscc.defl=
Δmax-Δmin

2∙Δr+c
=

(Δmax.abs+ψscc∙Δr)

2∙Δr+c
-
(Δmin.abs-ψscc∙Δr)

2∙Δr+c
=ψscc ∙

Δr

2∙Δr+c
 (A.8)

For setup (c) with the vertical load applied on the column, since the deflections of the tip of 3 

the hogging and sagging slab half relative to the column center (Δmax.abs and Δmin.abs 4 

respectively) are equal (Fig. A6), the connection rotation that is calculated according to the 5 

proposed model based on rotations is equal to the interstory drift (with zero rotation due to 6 

column deformation). Therefore, this last definition of connection rotation – (ψscc.rot - Eq. 7 

(Error! Reference source not found.)) will be used for the comparison of the proposed model 8 

with experimentally measured interstory drift for tests using setup (c) (Appendix 5). 9 

Fig. A6 – Setup (c) with vertical load applied on the slab surface: Deformed shape of slab 

according to finite element analysis and the proposed model. 

 10 

-3 -2 -1
Distance r from column axis [m]

0.22L
0.50L

Vertical loads + Lateral loads 
Vertical loads 
Lateral loads 

proposed model 

proposed model 

0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

Sl
ab

 d
ef

le
ct

io
n 

[c
m

]

Δmax.0.22L

Δ min.0.22L

ψslab



9 

For setup (c) with the vertical load applied on the slab surface, since the slab part between 1 

0.22L and 0.50L contributes to the rotation due to slab deformation ψslab, the connection 2 

rotation that is calculated according to the proposed model is smaller than the interstory drift 3 

(with zero rotation due to column deformation). For this case, an effective beam model should 4 

be established in order to calculate the contribution of the slab part outside 0.22L to the 5 

interstory drift. 6 

It should be mentioned that for the experimental investigation using the setups that are the 7 

most suitable for simulating seismically-induced deformations (setups (b) and (c)) a 8 

contribution of column deformation to the interstory drift could occur. However, for setup (b) 9 

the column was most times post-tensioned to reduce column deformation (Drakatos et al.Error! 10 

Reference source not found.) and for setup (c) the column was typically designed to remain elastic 11 

during the moment introduction. Nevertheless for both setups the contribution of column 12 

deformation was measured by most researchers and subtracted from the measured connection 13 

rotation. 14 

  15 
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APPENDIX 4 1 

Table 1–Summary of properties and results of interior slab-column specimens tested 2 
under constant vertical load and monotonically increasing moment 3 
Source Mark Geometric 

properties 
Material properties and 

reinforcement  
Loading 

parameter 
Results 

c, 
mm 

 

d, 
mm 

B, 
m 

fc, 
MPa 

dg, 
mm 

fy, 
MPa 

ρ, 
% 

ρ’, 
% Vtest/b0·d·ටfc, 

√MPa 

Mexp, 
kNm 

ψscc, 
% 

Ghali et 
al.Error! 
Reference 
source not 
found. (1974)– 
(c) 

B3NP 305 114 1.81 23.7 16.0 345 1.39 1.39 0.114 162.0 -
B5NP 305 114 1.81 28.3 16.0 345 1.39 1.39 0.104 196.0 -

Stamenkovic 
and 
ChapmanError! 
Reference 
source not 
found. (1974) – 
(c) 

C/I/1 127 56 0.87 36.0 9.5 434 1.17 1.17 0.376 7.3 -
C/I/2 127 56 0.87 29.7 9.5 434 1.17 1.17 0.308 10.5 -
C/I/3 127 56 0.87 25.9 9.5 434 1.17 1.17 0.174 13.6 -
C/I/4 127 56 0.87 25.4 9.5 434 1.17 1.17 0.108 16.7 -

Ghali et 
al.Error! 
Reference 
source not 
found. (1976) – 
(c) 

SM0.5 305 120 1.83 36.8 16.0 476 0.47 0.18 0.111 100.0 3.60
SM1.0 305 120 1.83 33.4 16.0 476 1.05 0.33 0.116 126.0 2.63
SM1.5 305 120 1.83 39.9 16.0 476 1.35 0.39 0.107 132.0 2.10

Islam and 
ParkError! 
Reference 
source not 
found. (1976) – 
(b) 

IP1 229 70 2.24 27.3 6.0 356 0.83 0.43 0.092 30.5 3.62
IP2 229 70 2.24 31.9 6.0 374 0.83 0.43 0.085 37.7 3.97

Elgabry and 
GhaliError! 
Reference 
source not 
found. (1987) – 
(c) 

1 250 123 1.80 35.0 16.0 452 1.30 0.43 0.149 130.0 1.66ǂ

Drakatos et 
al.Error! Reference 
source not found. 
(2016) – (b) 

PD1 390 204 3.00 37.9 16.0 559 0.79 0.38 0.091 526.0 1.66*
PD3 390 198 3.00 34.9 16.0 558 0.81 0.38 0.281 200.0 0.45
PD4 390 201 3.00 39.0 16.0 507 0.80 0.38 0.136 527.0 2.01
PD5 390 198 3.00 37.5 16.0 507 0.81 0.38 0.181 461.0 2.19
PD10 390 197 3.00 32.3 16.0 593 1.62 0.76 0.307 290.0 0.49
PD12 390 194 3.00 35.5 16.0 546 1.62 0.76 0.176 469.0 1.21

ǂ ψmax at 0.83Mexp 
*inconsistent rotation measurement. 

 4 
  5 
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Table 2–Summary of properties and results of interior slab-column specimens tested 1 
under constant vertical load and cyclically increasing moment 2 
Source Mark Geometric 

properties 
Material properties and 

reinforcement  
Loading 

parameter 
Results 

c, 
mm 

d, 
mm

B, 
m 

fc, 
MPa 

dg, 
mm 

fy, 
MPa 

ρ, 
% 

ρ’, 
% Vtest/b0·d·ටfc, 

√MPa 

Mexp, 
kNm 

ψscc, 
% 

Kanoh and 
YoshizakiError! 
Reference source not 
found. (1975) – (c) 

H9 200 80 1.80 22.4 9.5 361 0.70 0.70 0.111 33.0 2.00
H10 200 80 1.80 21.7 9.5 361 1.12 1.12 0.112 36.1 2.00
H11 200 80 1.80 19.6 9.5 361 1.12 1.12 0.236 

25.2 1.00

Islam and ParkError! 
Reference source not 
found. (1976) – (b) 

IP3C 229 70 2.24 29.7 6.0 316 0.83 0.43 0.089 35.8 3.62

Morrison and 
SozenError! 
Reference source not 
found. (1983) – (c) 

S5 76 61 1.83 34.9 9.5 340 1.03 1.03 0.085 36.0 4.70

Zee and MoehleError! 
Reference source not 
found. (1984) – (c)† 

INT 137 52 1.83 26.2 9.5 470 0.80 0.34 0.138 10.3 3.79

Pan and MoehleError! 
Reference source not found. 
(1989) – (c) 

AP1 274 101 3.66 33.3 10.0 472 0.76 0.26 0.125 61.8 1.60
AP3 274 101 3.66 31.7 10.0 472 0.76 0.26 0.078 

95.0 3.14

Cao Error! Reference 
source not found. 
(1993) – (c) 

CD1 250 115 1.90 40.4 20.0 395 1.29 0.46 0.287 49.9 0.90
CD5 250 115 1.90 31.2 20.0 395 1.29 0.46 0.228 70.5 1.20
CD8 250 115 1.90 27.0 20.0 395 1.29 0.46 0.179 85.0 1.30

Robertson et al.Error! 
Reference source not 
found. (2002) – (c)† 

1C* 254 95 3.00 35.4 9.5 420 0.75 0.36 0.088 58.5 3.52

Stark et al.Error! 
Reference source not 
found. (2005) – (c) 

C-02 305 82 2.44 30.9 19.0 454 1.42 0.51 0.205 43.1 2.30

Robertson and 
JohnsonError! 
Reference source not 
found. (2006) – (c)† 

ND1C 254 89 3.00 29.6 9.5 525 0.52 0.36 0.088 42.3 4.99
ND4LL 254 89 3.00 32.3 9.5 525 0.52 0.36 0.116 43.9 3.00
ND5XL 254 89 3.00 24.1 9.5 525 0.52 0.36 0.184 31.1 1.99
ND6HR 254 89 3.00 26.3 9.5 525 1.03 0.67 0.111 58.5 2.97
ND7LR 254 89 3.00 18.8 9.5 525 0.45 0.36 0.137 30.0 2.99

Choi et al.Error! 
Reference source not 
found. (2007) – (c) 

S1 300 90 2.40 33.5 16.0 458 1.05 0.60 0.090 83.1 3.00
S2 300 90 2.40 41.3 16.0 458 1.05 0.60 0.169 67.7 2.91
S3 300 90 2.40 37.8 16.0 458 1.59 0.80 0.093 118.5 2.89

Park et al.Error! 
Reference source not 
found. (2007) – (c)† 

RI-50 300 116 3.40 32.3 16.0 392 0.72 0.27 0.123 83.6 3.47

Kang and 
WallaceError! 
Reference source not 
found. (2008) – (c) 

C0 254 130 2.90 38.6 9.5 452 0.49 0.11 0.109 84.1 1.85

Tian et al.Error! 
Reference source not 
found. (2008) – (c) 

L0.5 406 127 3.66 25.6 9.5 469 0.61 0.25 0.126 121.0 1.52

SW1 200 89 1.80 37.0 16.0 520 1.25 0.60 0.172 64.7 -*
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Bu and PolakError! 
Reference source not 
found. (2009) – (c) 

SW5 200 89 1.80 45.0 16.0 520 1.25 0.60 0.234 

65.1 -*

Cho Error! Reference 
source not found. 
(2009)– (c) 

Control 300 130 3.00 34.3 25.0 392 0.45 0.25 0.106 
105.3 4.44

Choi et al.Error! 
Reference source not 
found. (2009) – (c)† 

SPB 355 106 4.20 34.1 16.0 440 1.24 0.35 0.106 137.4 3.68

Park et al.Error! 
Reference source not 
found. (2012) – (c) 

RCA 250 106 2.70 22.5 9.5 430 1.06 0.79 0.171 70.8 1.24

RCB 300 106 2.70 38.7 9.5 430 1.06 0.79 0.157 74.0 1.37

Drakatos et al.Error! 
Reference source not found. 
(2016) – (b) 

PD2 390 198 3.00 36.9 16.0 558 0.81 0.34 0.262 196.0 0.36
PD6 390 199 3.00 38.3 16.0 507 0.81 0.30 0.170 372.0 0.86
PD8 390 198 3.00 32.7 16.0 575 0.81 0.29 0.126 384.0 1.30
PD11 390 196 3.00 33.1 16.0 593 1.60 0.71 0.280 286.0 0.43
PD13 390 196 3.00 36.5 16.0 546 1.60 0.72 0.178 410.0 0.86

†Test using setup (c) with the vertical load applied on the slab, for which the measured drift corresponds to the 
rotation due to slab deformation, i.e. the sum of ψscc and the slab rotation outside r = 0.22L. (Note: 1m = 3.18 ft)
*inconsistently high drift measurement (communication with the authors) 
 1 
Table 3–Summary of properties, dimensions and results for interior slab-column 2 
specimens tested under constant eccentricity and monotonically increasing moment 3 

Source Mark Geometric 
properties 

Material properties and 
reinforcement  e, 

mm 

Results 

c, 
mm  

d, 
mm 

B, 
m 

fc, 
MPa 

dg, 
mm 

fy, 
MPa 

ρ, 
%  

ρ’, 
% 

Vexp, 
kN 

ψmax, 
% 

Elstner and 
Hognestad40 
(1956) – (a)† 

A11 356 114 1.83 25.9 25.4 326 2.47 1.15 178 529.0 1.39 

A12 356 114 1.83 28.4 25.4 326 2.47 2.47 178 529.0 1.39 

Moe41 (1961) – 
(a) 

M2 305 114 1.83 25.7 9.5 481 1.50 - 196 292.2 - 
M2A 305 114 1.83 15.5 9.5 481 1.50 - 185 212.6 - 
M3 305 114 1.83 22.8 9.5 481 1.50 - 338 207.3 - 
M4A 305 114 1.83 17.7 9.5 481 1.50 - 434 143.7 - 
M6 254 122 1.83 26.5 9.5 327 1.34 - 168 239.3 - 
M7 254 122 1.83 25.0 9.5 327 1.34 - 61 311.0 - 
M8 254 122 1.83 24.6 9.5 327 1.34 0.57 437 149.5 - 
M9 254 122 1.83 23.2 9.5 327 1.34 - 127 266.9 - 
M10 254 122 1.83 21.1 9.5 327 1.34 0.57 308 177.9 - 

Anis42 (1970) – 
(a) 

B3 203 76 1.47 30.4 9.5 331 2.19 - 94 191.3 - 
B4 203 76 1.47 29.8 9.5 331 2.19 - 188 139.7 - 
B5 203 76 1.47 29.0 9.5 331 2.19 - 313 125.4 - 
B6 203 76 1.47 31.3 9.5 331 2.19 - 464 115.7 - 
B7 203 76 1.47 33.8 9.5 331 2.19 - 737 69.8 - 

Narasimhan43 

(1971) – (a) 
L1 305 143 2.28 33.8 9.5 398 1.11 - 305 399.0 - 

Hawkins et al.44 
(1989) – (b)† 

6AH 305 121 1.83 31.3 19.0 472 0.60 0.28 535 169.0 5.55
9.6AH 305 118 1.83 30.7 19.0 415 0.79 0.50 522 187.0 4.02 
14AH 305 114 1.83 30.3 19.0 420 1.26 0.63 489 205.0 3.19 
6AL 305 121 1.83 22.7 19.0 472 0.60 0.28 135 244.0 3.19 
9.6AL 305 118 1.83 28.9 19.0 415 0.79 0.50 135 257.0 2.64 
14AL 305 114 1.83 27.0 19.0 420 1.26 0.63 136 319.0 2.22 
7.3BH 305 82 1.83 22.2 19.0 472 0.64 0.40 488 80.0 4.16 
9.5BH 305 83 1.83 19.8 19.0 472 0.79 0.51 483 94.0 4.72 
14.2BH 305 79 1.83 29.5 19.0 415 1.22 0.76 500 102.0 3.19 
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Source Mark Geometric 
properties 

Material properties and 
reinforcement  e, 

mm 

Results 

c, 
mm  

d, 
mm 

B, 
m 

fc, 
MPa 

dg, 
mm 

fy, 
MPa 

ρ, 
%  

ρ’, 
% 

Vexp, 
kN 

ψmax, 
% 

7.3BL 305 83 1.83 18.1 19.0 472 0.64 0.40 98 130.0 3.89 
9.5BL 305 83 1.83 20.0 19.0 472 0.79 0.51 117 142.0 4.16 
14.2BL 305 76 1.83 20.5 19.0 415 1.22 0.76 129 162.0 3.47 
6CH 305 121 1.83 52.4 19.0 472 0.60 0.28 511 186.0 6.24 
9.6CH 305 117 1.83 57.2 19.0 415 0.87 0.50 519 218.0 3.14 
14CH 305 114 1.83 54.7 19.0 420 1.16 0.63 529 252.0 3.05 
6CL 305 121 1.83 49.5 19.0 472 0.60 0.28 135 273.0 4.72 
14CL 305 114 1.83 47.7 19.0 420 1.16 0.63 136 362.0 2.36 
14FH 305 114 1.83 31.2 19.0 446 0.90 0.22 498 206.0 2.58 
6FLI 305 120 1.83 25.9 19.0 472 0.59 0.27 119 227.0 3.15 
10.2FLI 305 114 1.83 18.1 19.0 446 1.13 0.49 112 240.0 1.94 
10.2FLO 305 114 1.83 26.5 19.0 446 0.77 0.49 121 290.0 2.78 
10.2FHO 305 121 1.83 33.8 19.0 446 0.77 0.49 491 183.0 3.05 

Kamaraldin45 
(1990) – (a) 

SA1 150 64 2.00 33.0 10.0 640 0.55 0.55 52 105.0 - 
SA3 150 64 2.00 36.0 10.0 640 0.55 0.55 100 85.0 - 
SA4 150 64 2.00 32.0 10.0 640 0.55 0.55 336 49.0 - 
SB2 150 62 2.00 28.0 10.0 640 1.00 1.00 360 61.0 - 

Marzouk et al.46 
(1996) – (b) 

NHLS0.5 250 119 1.87 43.2 19.0 450 0.50 0.28 167 266.2 - 
NHLS1.0 250 119 1.87 42.7 19.0 450 1.00 0.38 130 408.2 - 
NNHS0.5 250 119 1.87 36.2 19.0 450 1.00 0.38 720 163.6 - 
NHHS0.5 250 119 1.87 34.0 19.0 450 0.50 0.28 595 164.3 - 
NHHS1.0 250 119 1.87 35.3 19.0 450 1.00 0.38 464 250.3 - 

Krüger et al.47 
(2000) – (a)† 

P16A 300 121 3.00 38.6 16.0 460 1.00 - 160 332.0 1.26 
P32 300 121 3.00 30.4 16.0 460 1.00 - 320 270.0 0.76 

Binici and 
Bayrak48 (2005) 
– (a)† 

CE 150 57 1.02 24.1 9.5 455 1.38 0.70 150 95.6 2.25 

Ben Sasi49 
(2012) – (a) 

SI-1 180 60 1.00 28.1 12.0 335 1.40 1.40 280 65.0 - 
SI-2 180 60 1.00 25.0 12.0 335 1.40 1.40 580 37.5 - 

† Maximum slab rotations, calculated from edge deflections, are reported 
 1 

Additional references (tests under constant eccentricity) 2 

40. Elstner, R. C., and Hognestad, E., “Shearing Strength of Reinforced Concrete Slabs,” 3 

ACI JOURNAL, Proceedings V. 53, No. 2, Feb. 1956, pp. 29-58. 4 

41. Moe, J., “Shearing Strength of Reinforced Concrete Slabs and Footings under 5 

Concentrated Loads,” Bulletin D46, Portland Cement Association, Research and Development 6 

Laboratories, Skokie, IL, 1961, 135 pp. 7 

42. Anis, N.N., “Shear Strength of Reinforced Concrete Flat Slabs Without Shear 8 

Reinforcement,” doctoral thesis, Imperial College of Science and Technology, London, United 9 

Kingdom, 1970, 265 pp. 10 
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43. Narasimhan, N., “Shear Reinforcement in Reinforced Concrete Column Heads,” 1 

doctoral thesis, Imperial College of Science and Technology, London, United Kingdom, 1971, 2 

268 pp.  3 

44. Hawkins, N.; Bao, A.; and Yamazaki, J., “Moment Transfer from Concrete Slabs to 4 

Columns,” ACI Structural Journal, V. 86, No. 6, Nov.-Dec. 1989, pp. 705-716. 5 

45. Kamaraldin, K., “Punching Shear and Moment Transfer in Reinforced Concrete Flat 6 

Slabs,” doctoral thesis, The Polytechnic of Central London, London, United Kingdom, 1990, 7 

287 pp. 8 

46. Marzouk, H.; Emam, M.; and Hilal, M.S., “Effect of High-Strength Concrete Columns 9 

on the Behavior of Slab-Column Connections,” ACI Structural Journal, V. 93, No. 5, Sept.-10 

Oct. 1996, pp. 545-552. 11 

47. Krüger, G., “Eccentric Punching Resistance of Flat Slabs,” doctoral thesis, No. 2064, 12 

EPFL, Lausanne, Switzerland, 1999, 191 pp. (in French) 13 

48. Binici, B., and Bayrak, O., “Upgrading of Slab-Column Connections using Fiber 14 

Reinforced Polymers,” Engineering Structures, V. 27, No. 1, Oct. 2004, pp. 97-107. 15 

49. Ben-Sasi, O.M., “Tests of Interior Flat Slab-Column Connections Transferring Shear 16 

Force and Moment,” 37th Conference on Our World in Concrete & Structures, Singapore, Aug. 17 

2012. 18 

  19 
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APPENDIX 5 1 

 2 

Table 4–Moment resistance and deformation capacity predictions for interior slab-3 
column specimens tested under constant vertical load and monotonically increasing 4 
moment 5 

Source Mark Mpred / Mexp (-) ψscc.pred / ψscc.exp (-)
CSCT 
(mono) 

ACI 318-
14Error! 

Reference 

source not 

found. 

BromsError! 
Reference 

source not 

found. 

CSCT 
(mono) 

 

BromsError! 
Reference 

source not 

found. 

Ghali et al.Error! 
Reference source not 
found. (1974) – (c) 

B3NP 0.948 0.554 0.913 - - 
B5NP 0.817 0.517 0.870 

- - 

Stamenkovic and 
ChapmanError! Reference 
source not found. (1974) 
– (c) 

C/I/1 0.832 0.618 1.021 - - 
C/I/2 0.984 0.560 1.215 - - 
C/I/3 1.059 0.569 1.347 - -
C/I/4 0.962 0.533 1.229 - - 

Ghali et al.Error! 
Reference source not 
found. (1976) – (c) 

SM0.5 1.009 0.619 1.000 0.928 2.221
SM1.0 0.979 0.807 1.018 0.762 1.049 
SM1.5 1.268 0.838 1.046 1.063 1.102 

Islam and ParkError! 
Reference source not 
found. (1976) – (b) 

IP1 1.084 0.611 1.621 1.137 3.194 

IP2 0.926 0.519 1.412 1.094 3.111 

Elgabry and GhaliError! 
Reference source not 
found. (1987) – (c) 

1 1.061 0.627 0.950 1.054ǂ - 

Drakatos et al.Error! Reference 
source not found. (2016) – (b) 

PD1 1.070 0.766 0.826 -* -* 
PD3 1.066 0.767 0.985 0.981 2.369 
PD4 0.975 0.691 0.856 0.876 1.099 
PD5 1.021 0.640 0.898 0.545 0.874 
PD10 1.170 0.662 0.836 0.886 0.661 
PD12 1.094 0.617 0.736 0.721 0.705 

Mean (all tests)  1.018 0.640 1.043 0.913 1.639 
Mean (d>0.1m)  1.040 0.675 0.911 0.869 1.260 
COV (all tests)  0.107 0.154 0.224 0.198 0.603 
COV (d>0.1m)  0.109 0.149 0.101 0.194 0.525 

1m = 3.28 ft 
ǂ ψmax at 0.83Mexp 
*inconsistent rotation measurement 
 

 6 

  7 
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Table 5–Moment resistance and deformation capacity predictions for interior slab-1 
column specimens tested under constant vertical load and cyclically increasing moment 2 

Source Mark Mpred / Mexp (-) ψscc.pred / ψscc.exp (-) 

CSCT 
(cyc) 

ACI 318-
14Error! 

Reference 

source not 

found. 

CSCT 
(cyc) 

ACI 318-
14Error! 

Reference 

source not 

found. 

Hueste & 
WightError
! Reference 

source not 

found. 

Kanoh and YoshizakiError! 
Reference source not 
found. (1975) – (c) 

H9 1.094 0.746 1.040 0.970 1.300 
H10 1.027 0.704 0.970 0.958 1.270 
H11 1.007 0.676 1.012 0.500 1.056 

Islam and ParkError! 
Reference source not 
found. (1976) – (b) 

IP3C 

1.012 0.462 0.843 0.641 0.982 

Morrison and SozenError! 
Reference source not 
found. (1983) – (c) 

S5 0.924 0.639 0.963 0.559 - 

Zee and MoehleError! 
Reference source not 
found. (1984) – (c) ǂ 

INT 0.954 0.729 0.964 0.410 0.431 

Pan and MoehleError! Reference 
source not found. (1989) – (c) 

AP1 0.986 0.898 0.917 1.079 1.292 
AP3 1.032 0.584 0.882 0.765 1.195 

CaoError! Reference 
source not found. (1993) 
– (c) 

CD1 0.931 0.789 0.897 0.556 0.917 
CD5 0.992 0.693 0.899 0.417 0.918 
CD8 0.937 0.649 0.875 0.761 1.023 

Robertson et al.Error! 
Reference source not 
found. (2002) – (c) ǂ 

1C 1.011 0.991 1.208 0.640 0.961 

Stark et al.Error! 
Reference source not 
found. (2005) – (c) 

C-02 0.883 0.939 0.988 0.444 0.583 

Robertson and 
JohnsonError! Reference 
source not found. (2006) 
– (c) ǂ 

ND1C 0.992 0.560 0.975 0.466 0.715 
ND4LL 0.941 0.512 0.988 0.635 0.837 
ND5XL 0.937 0.564 1.090 0.485 0.662 
ND6HR 0.957 0.774 0.986 0.650 0.868 
ND7LR 0.925 0.635 0.987 0.522 0.552 

Choi et al.Error! 
Reference source not 
found. (2007) – (c) 

S1 0.998 0.780 1.033 0.772 1.181 
S2 0.810 0.879 0.809 0.442 0.491 

S3 0.881 0.663 0.902 0.790 1.196 

Park et al.Error! Reference 
source not found. (2007) 
– (c) ǂ 

RI-50 0.955 0.719 1.025 0.535 0.690 

Kang and WallaceError! 
Reference source not 
found. (2008) – (c) 

C0 0.817 0.963 0.814 1.074 1.469 

Tian et al.Error! Reference 
source not found. (2008) 
– (c) 

L0.5 1.001 0.690 1.121 1.180 1.469 

Bu and PolakError! 
Reference source not 
found. (2009) – (c) 

SW1 0.881 0.567 -* -* -*

SW5 0.775 0.547 -* -* -* 
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ChoError! Reference 
source not found. (2009) 
– (c) ǂ 

Control 0.897 0.799 0.916 0.452 0.623 

Choi et al.Error! 
Reference source not 
found. (2009) – (c) ǂ 

SPB 0.988 0.864 0.930 0.654 1.023 

Park et al.Error! Reference 
source not found. (2012) 
– (c) 

RCA 0.956 0.798 0.987 0.865 1.095 

RCB 1.052 0.945 1.190 0.927 1.039 

Drakatos et al.Error! Reference 
source not found. (2016) – (b) 

PD2 1.009 0.795 1.132 1.389 2.260 
PD6 0.971 0.728 0.918 0.829 1.439 
PD8 0.980 0.736 0.766 0.993 1.100 
PD11 0.928 0.639 0.721 1.163 1.670 
PD13 1.007 0.654 0.718 0.680 1.389 

Mean (all tests)  0.956 0.723 0.954 0.733 1.053 
Mean (d>0.1m)  0.967 0.761 0.924 0.842 1.212 
COV (all tests)  0.072 0.185 0.124 0.351 0.364 
COV (d>0.1m)  0.057 0.144 0.147 0.332 0.320 

ǂ Rotation due to slab deformation ψslab for tests using setup (c) with the vertical load applied on the slab (to 
account for simply supported slabs the first term “2” in Eq. Error! Reference source not found. is 
replaced by “3”, the second term “2”and the term “3”are omitted ) 
*inconsistently high drift measurement (communication with the authors) 
1m = 3.18 ft 

APPENDIX 6 1 

As can be seen from Figure A7(a), in average the predictions of ACI 318-14Error! Reference source 2 

not found. for the shear strength (or equally the moment capacity) of slabs subjected to constant 3 

eccentricity are rather conservative (ratio of predicted to observed values: 0.76 ± 0.24). For 4 

eccentricities e both higher and lower than the column size c ACI 318-14Error! Reference source not 5 

found. slightly overestimates the shear strength for tests with low values of gravity load at failure 6 

and tends to underestimate the shear strength for tests with intermediate and high values of 7 

gravity induced shear at failure. Broms’ modelError! Reference source not found. shows the same trend 8 

but with significant strength overestimation (1.07± 0.19), in particular for low vertical loads at 9 

failure (Fig. A7(b)). For the predictions of the proposed model combined with CSCT(mono) 10 

(Fig. A7(c)) this trend can still be visible but the mean value of the ratio Vpred / Vexp falls to 1.01 11 

and the scatter is significantly reduced (COV = 10%). 12 
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Fig. A7 – Shear strength predictions for specimens subjected to constant eccentricity and 

monotonically increasing shear force according to: (a) ACI 318-14Error! Reference source not found., 

(b) BromsError! Reference source not found.; and (c) proposed model (CSCT(mono)). 

 1 

Figure A8 presents the predictions of the proposed model as ratio of calculated to measured 2 

maximum local slab rotation at peak moment for tests conducted under constant eccentricity 3 

for which the experimental values are reported. Since the reported rotations are local and both 4 

ACI 318-14Error! Reference source not found. and the model developed by BromsError! Reference source not 5 

found. provide global ultimate rotations, direct comparison of their performance with regard to 6 

the proposed model is not possible. Moreover, ACI 318-14Error! Reference source not found. provides 7 

estimates of the deformation capacity of slab-column connections subjected to cyclic loading. 8 

Therefore, no comparison with monotonic test results was performed. 9 

As can be seen from Figure A8 calculating using the failure criterion that accounts for shear 10 

redistribution (Fig. A8(a)) renders the predictions of the maximum local slab rotation at peak 11 

moment less conservative in average as compared to the calculation using the CSCT(cyc) 12 

failure criterion (ratio of predicted to observed values: 0.99 ± 0.13 and 0.79 ± 0.13, 13 

respectively). 14 
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Fig. A8  – Predictions of maximum local slab rotation at peak moment for specimens 

subjected to constant eccentricity and monotonically increasing shear force according to 

the proposed model combined with: (a) CSCT(cyc); and (b) CSCT(mono). 
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Table 6–Strength and deformation capacity predictions for interior slab-column 1 
specimens tested under constant eccentricity and monotonically increasing moment 2 

Source Mark Vpred / Vexp (-) ψmax.pred / ψmax.exp (-) 

CSCT 
(mono) 

CSCT 
(cyc) 

ACI 
318-

14Error! 

Reference 

source not 

found. 

BromsE
rror! 

Reference 

source not 

found. 

CSCT 
(mono) 

CSCT 
(cyc) 

Elstner and 
Hognestad40 (1956) 
– A 

A11 0.796 0.744 0.472 0.664 0.906 0.791 
A12 0.825 0.768 0.494 0.690 0.950 0.820 

Moe41 (1961) – A M2 0.927 0.819 0.638 0.945 - - 
M2A 1.088 0.961 0.695 1.054 - - 
M3 1.049 0.832 0.672 0.973 - - 
M4A 1.260 0.966 0.748 1.041 - - 
M6 0.991 0.892 0.703 1.218 - - 
M7 0.965 0.930 0.748 1.055 - - 
M8 1.147 0.937 0.690 1.378 - - 
M9 1.003 0.945 0.714 1.057 - - 
M10 1.048 0.893 0.651 1.185 - - 

Anis42 (1970) – A B3 0.932 0.880 0.577 0.874 - - 
B4 1.095 1.008 0.609 1.002 - - 
B5 1.017 0.861 0.518 0.905 - - 
B6 0.925 0.759 0.457 0.733   - - 
B7 1.115 0.876 0.567 0.812 - - 

Narasimhan43 
(1971) – A 

L1 0.940 0.841 0.686 1.000 - - 

Hawkins et al.44 
(1989) – B 

6AH 0.918 0.888 0.909 1.252 0.915 0.663 
9.6AH 1.032 0.958 0.796 1.236 0.841 0.652 
14AH 1.101 0.942 0.713 1.082 0.762 0.596 
6AL 1.058 0.995 0.968 1.155 0.915 0.724 
9.6AL 1.098 1.060 1.002 1.218 1.133 0.951 
14AL 1.002 0.966 0.743 0.943 0.932 0.851 
7.3BH 1.172 1.061 0.988 1.396 1.115 0.877 
9.5BH 1.089 0.929 0.812 1.220 0.778 0.604 
14.2BH 1.096 0.870 0.809 1.276 1.078 0.755 
7.3BL 1.021 0.957 1.070 1.053 1.028 0.820 
9.5BL 1.015 0.934 0.971 1.138 0.841 0.673 
14.2BL 0.868 0.822 0.762 0.945 0.824 0.729 
6CH 1.044 1.024 1.098 1.355 0.894 0.697 
9.6CH 1.157 1.090 0.924 1.368 1.178 0.916 
14CH 1.089 0.949 0.744 1.166 0.941 0.725 
6CL 1.028 1.011 1.278 1.127 1.044 0.799 
14CL 1.036 0.988 0.870 1.169 1.127 0.966 
14FH 1.063 0.919 0.712 1.098 1.039 0.806 
6FLI 1.125 1.091 1.148 1.234 1.095 0.924 
10.2FLI 1.129 1.062 0.850 1.006 1.082 0.830 
10.2FLO 0.863 0.825 0.835 1.040 1.191 0.928 
10.2FHO 1.130 0.987 0.918 1.450 1.203 0.731 

Kamaraldin45 
(1990) – A 

SA1 0.852 0.808 0.770 0.819 - - 
SA3 0.987 0.944 0.910 1.003 - - 
SA4 1.096 0.964 0.734 1.484 - - 
SB2 1.051 0.883 0.503 0.820 - - 

Marzouk et al.46 
(1996) – B 

NHLS0.5 0.808 0.791 0.936 0.854 - - 
NHLS1.0 0.886 0.813 0.657 0.906 - - 
NNHS1.0 1.093 0.893 0.649 1.023  - 
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Source Mark Vpred / Vexp (-) ψmax.pred / ψmax.exp (-) 

CSCT 
(mono) 

CSCT 
(cyc) 

ACI 
318-

14Error! 

Reference 

source not 

found. 

BromsE
rror! 

Reference 

source not 

found. 

CSCT 
(mono) 

CSCT 
(cyc) 

NHHS0.5 0.877 0.831 0.713 1.033 - - 
NHHS1.0 0.957 0.788 0.557 0.949 - - 

       
Krüger et al.47 
(2000) – A 

P16A 0.942 0.898 0.870 1.014 0.996 0.917 
P32 0.976 0.911 0.725 0.860 0.862 0.820 

Binici and Bayrak48 
(2005) – A 

CE 0.847 0.746 0.435 0.791 0.924 0.716 

Ben Sasi49 (2012) – 
A 

SI-1 1.077 0.996 0.651 1.458 - - 
SI-2 0.920 0.835 0.657 1.442 - - 

Mean (all tests)  1.012 0.912 0.761 1.075 0.985 0.788 
Mean (d> 0.1 m)  1.013 0.920 0.786 1.080 1.000 0.805 

COV (all tests)  0.103 0.098 0.239 0.191 0.131 0.135 
COV (d> 0.1 m)  0.107 0.100 0.222 0.165 0.127 0.134 

 1 

APPENDIX 7 2 

The following symbols are used in the paper: 3 

b0 = perimeter of the critical section at d/2 from the column 4 

c = side length or a diameter of the column 5 

  d  = effective depth of a slab (distance from the tension reinforcement to the extreme 6 

compressed fibre) 7 

gd  = maximum diameter of the aggregate 8 

g0d  = reference aggregate size (16 mm, 0.63”) 9 

e = ratio of inserted moment to applied vertical load on the slab-column connection 10 

(eccentricity) 11 

ek = ratio of inserted moment to applied vertical load on the slab-column connection 12 

(eccentricity) at load step k 13 

cf  = average compressive strength of concrete (cylinder) 14 

yf  = yield stess of reinforcing steel 15 
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h  = slab thickness – beam height (Effective Beam Width Method) 1 

B = specimen size (for Table 1 and Table 2) 2 

L = distance between the axes of the columns in a continuous slab (slab span) 3 

Mexp = peak moment applied to the slab-column connection (moment strength) 4 

Mk = moment applied to the slab-column connection at load step k 5 

Mpred = predicted peak moment acting on the slab-column connection 6 

n = number of sector elements 7 

N = number of tests 8 

r  = distance from the center of the column 9 

cr  = column radius 10 

rq = distance between the center of the column and the point of application of load 11 

V =vertical load acting on the slab-column connection 12 

Vexp = vertical load applied to the slab-column connection at peak moment 13 

Vk = vertical load acting on the slab-column connection at load step k 14 

Vpred = predicted vertical load acting on the slab-column connection at peak moment 15 

VR = punching shear resistance (without unbalanced moment) 16 

vR(s) = shear resistance per unit length  17 

γf = contribution of flexure mechanism to the total moment 18 

γf.pred = predicted contribution of flexure mechanism to the total moment 19 

γv = contribution of eccentric shear force mechanism to the total moment 20 

Δφ = angle of a slab sector 21 

Δr = distance from column face 22 

ΔL = slab vertical displacement (or deflection) due to lateral loads 23 

ΔV = slab vertical displacement (or deflection) due to vertical loads 24 
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ΔV+L = slab vertical displacement (or deflection) due to combined vertical and lateral loads 1 

Δmax = maximum local slab vertical displacement (or deflection) 2 

Δmin = minimum local slab vertical displacement (or deflection) 3 

ρ = hogging (top) flexural reinforcement ratio 4 

ρ' = sagging (bottom) flexural reinforcement ratio 5 

φ = angle with respect to the bending axis 6 

ψ(φ) = local slab with respect to the bending axis 7 

ψcol = contribution of column deformation to the interstory drift 8 

ψmax = maximum slab rotation 9 

ψmax.exp= maximum measured slab rotation at peak moment 10 

ψmax.pred= maximum predicted slab rotation at peak moment 11 

ψmin = minimum slab rotation 12 

ψscc = contribution of slab deformation to the interstory drift (connection rotation) 13 

ψscc.defl= connection rotation defined on the basis of deflections 14 

ψscc.exp = measured connection rotation at peak moment 15 

ψscc.pred= predicted connection rotation at peak moment 16 

ψscc.rot = connection rotation defined on the basis of rotations 17 

ψst = interstory drift rotation 18 

ψv = slab rotation due to vertical load 19 

 20 


