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A B S T R A C T

Aggregate interlocking allows transferring shear and normal stresses through open cracks, and is considered to
significantly contribute to the force transfer in cracked concrete. The complex phenomenon depends on the
roughness of cracked surfaces, where material protruding from one side may engage with the opposite one. Two-
Phase models were established in the 1980s by Walraven to estimate the force transfer, distinguishing between
cement matrix and spherical aggregates. The approach leads to good results but has several shortcomings. In this
paper, the fundamental assumptions are reviewed using specific numerical and experimental investigations.
Special tests respecting the geometrical assumptions are presented and the results compared with numerically
calculated estimates. The model is extended to address some shortcomings and investigate the physical nature of
the main parameters. Positive aspects of Two-Phase models and a number of limitations are highlighted, al-
lowing a consistent step forward in the understanding of aggregate interlocking.

1. Introduction

Concrete is characterised in tension by a low resistance and a small
deformation capacity. Unless specific measures are adopted (such as
pre-stressing to compensate external actions or providing joints to limit
the imposed deformations due to structural and thermal effects), con-
crete is generally cracked both at serviceability and ultimate limit
states. To provide the necessary resistance, reinforcement can be ar-
ranged in regions where tension occurs for static reasons (e.g. in the
tension side of a bending beam), but the transfer of compression and
shear stresses is performed in many cases through cracked regions,
which developed due to previous actions. This is for instance shown in
Fig. 1, where cracks with a flexural origin (and controlled by the tensile
reinforcement) progress and eventually develop inside the location of
the theoretical compression strut carrying shear.

The ability of transferring shear and compression stresses through
cracks in concrete is governed by the crack opening and sliding as well
as the surface properties of the concrete (surface roughness, aggregate
and matrix strengths). As shown in the example of Fig. 1b, the kine-
matics of the lips of the crack generally imply both opening (Mode I
kinematics, Fig. 1c) and sliding (Mode II kinematics, Fig. 1d) compo-
nents. Hence, the kinematic angle α depends on the relative position of

the center of rotation which is located approximately at the tip of the
shear crack [1-3]. Such general kinematics (Fig. 1e) are usually referred
to as Mixed Mode kinematics. Also, it is interesting to note that different
kinematics normally develop along a crack and this yields potentially to
different capacities to transfer shear and normal forces. The resulting
contact forces at the cracked surface (engagement of aggregates and
rough surfaces) as a function of the acting kinematics, is usually defined
as the aggregate interlocking capacity [4-7]. Investigated in an in-
tensive manner since the 1960s, a number of mechanical approaches
have been developed, particularly during the 1980s [6-10] but also
more recently [11, 12]. These approaches gave a comprehensive out-
look of the phenomenon and allowed to calculate the interface forces
based on the mechanical parameters of concrete. In general, they can be
classified depending on the approach followed to model the continuum,
which allows to distinguish two general strategies.

The first, referred to as the Homogeneous models, assume that con-
crete is made of a single homogeneous material, with rough surface
profiles taken into account in the shear resistance calculations [7, 11].
The second, referred to as the Two-Phase model, originally proposed by
Walraven [6] and with later modifications [13, 14], accounts for het-
erogeneity of concrete (considering aggregates and mortar), however
with a rather simple surface profile. Both approaches predict eventually
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the resisting force FR as the following ensemble average,

A A A=F N N F d dN( , ) ( )R (1)

where A N( , ) is the joined probability density of having one contact
patchA , such a contact patch being among N other patches and AF ( )
is the force produced by such a contact patch. This equation, which will
be re-derived in Section 2, is central to Two-Phase models aiming at
predicting shear stress/force resistance of a concrete crack. While Φ

describes the stochastic part coming from the random distribution of
aggregates, the force AF ( ) is usually computed with a purely geome-
trical treatment [6] (Table 1).

In this paper, we will focus only on the Two-Phase models as ori-
ginally proposed by Walraven [6] and used in many works to model
shear [3] or punching cases [14, 15]. Additional hypotheses are in-
troduced in their works in order to find semi-analytical forms of the
probability density (Φ) and the transmitted force (F). These hypotheses
can be divided into two categories: geometrical and material. The
geometrical hypotheses state that the crack surface profile is planar
with spherical aggregates protruding partially from it. Fig. 2 presents
such an approach. The probability density Φ can be derived as a
function of both the packing density of the concrete and of the dis-
tribution of aggregate sizes (through a grading curve as in Ref. [16]). In
Ref. [6], the material hypotheses state that the deformation is under-
taken mostly by the matrix, so that it is idealized as perfectly-plastic
whereas aggregates are considered as rigid. Lastly, in the original for-
mulation of Walraven, the surface profile is un-physically assumed to
remain unchanged after being in contact. There are two material free-
parameters for this model: a plastic stress threshold σpu, and a friction
coefficient μ.

This approach generally provides reasonable estimates of the max-
imum normal and tangential stresses [17], but is less accurate in the
post-peak phase where it tends to overestimate the transferred
forces [3]. Moreover, the assumption of perfectly spherical and rigid
aggregates may be very unrealistic depending on the type of aggregates
effectively used. Finally, the physical nature of the free-parameters σpu

and μ remains unclear, as they are difficult to measure directly and were
likely adapted to better fit experimental results.

The aim of this paper is to better understand the consistency of the
Two-Phase model approach and particularly of the physical interpreta-
tion of the parameters σpu and μ. An extension of the model will be
suggested by introducing the induced surface alterations, which will
allow accurate semi-analytic predictions of shear stress resistance. This
new model will be strengthened by a number of tailored experiments,
comprising concrete with various aggregate sizes, and various loading
kinematics. Furthermore, the new model being an extension of
Walraven's model uses only a few material parameters (σpu, μ) as well as
parameters (βy, βz) to predict the complex mechanical mechanism
(elasto-plastic deformation, degradation of matrix material) at the crack
interface. Being simple and purely geometric in nature, the model does

Compression strut

(b)

R

P

u
w CSC

(c)

w

(d) (e)

w u
w
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Cracked region

Fig. 1. (a) Cracks developing through the compression strut in a concrete beam without shear reinforcement (b) Crack pattern before shear failure (c) Mode I
kinematics; (d) Mode II kinematics (e) Mixed Mode kinematics.

Table 1
Symbols and notations.

Symbol Description Physical
dimension

a Contact area for a single patch Area
θ Inclination angle –
N Number of contact patches –
A Total contact area Area
Asp Horizontal projection of all spheres Area
X Material point position vector –
{ex,ey,ez} Orthonormal basis –
τ Contact stress field Force/area
FN Total normal force Force
FT Total shear resistance force Force
H Hurst exponent –
FR Total resistance force Force
σpu Plastic stress threshold Force/area
μ Friction coefficient –
A Physical space where interlock occurs Lengthd−1

u Crack opening Length
w Crack opening along crack plane Length
δ Crack sliding along perpendicular to crack plane Length
ρN(a,θ) Joined probability density function of contact

patch of area a and an inclination angle θ
–

N( ) Probability density function of number of contact
patches

–

Φ(a,θ,N) Joined probability density –
α Crack opening angle respective to crack plane –
Dsteel Diameter of steel spheres Length
Dmax Maximum aggregate size in concrete mix Length
fc Cylinder compressive strength of concrete Force/area
fcm,28 Average cylinder compressive strength at 28 days Force/area
fc,Test Day Cylinder compressive resistance on day of test Force/area
fc,ref Reference compressive strength (30MPa) Force/area

fc Brittleness factor –
fcp Equivalent plastic resistance Force/area
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possesses some limitations which are discussed in detail in later sec-
tions.

This paper starts in Section 2 by reviewing and reformulating the
Two-Phase problem, which will describe the necessary mathematical
concepts. Section 3 describes the experimental setup, which is designed
to remain as close as possible to the hypotheses of the presented
models. In Section 4.1, the Two-Phase model is extended to predict shear
stress resistance for a 3D geometry. New predictions made by this
model will be compared with experimental results, which allow to
highlight the situations where the original model does not work accu-
rately. Then, a new semi-analytical model acknowledging the surface
alterations due to contact and the elasto-plastic behaviour of the pro-
blem is introduced in Sections 4.2 and 4.3. With such an approach, a
fine agreement with experiments will be demonstrated. Finally,
Section 5 discusses the implications and perspectives brought by this
model, especially in view of making predictions for complex crack
roughness, therefore involving a statistical treatment.

2. Two-Phase model

In this section, Walraven's approach [6] is reviewed, starting with
the derivation of it's central Eq. (1). To do so, the resisting force FR is
calculated as the sum of all the forces acting along the contact area A on
the crack surface, which provides the general definition:

=F X ndS( )R A (2)

where τ refers to the contact stress field and n the unit vector field
normal to the surface. The contact area A can be decomposed into N
smaller contacting patches (ai)i=1…N such that =a Ai

N
i . The average

contact force produced by these patches can be linked to the total force
with:

= =F X n F F
N

dS N¯ 1 ( ) ¯

F
i

N

a R
i

i (3)

Assuming numerous contact patches and a faithful statistical re-
presentation, F̄ can be expressed with a probability density integral:

A A A= =F F
N

F d¯ 1 ( ) ( )
i

N

i
N

(4)

where A( )N is the joined probability density of having a contact patch
A , knowing that there are N patches in total. On the other end, AF ( ) is
the force produced by a contact patch. When the probability density for
the number of contact patches ( ) is provided, the expectation of the
resistance force Eq. (1) can be obtained by combining Eqs. (3) and (4):

A A A

A

=F FN N d dN( ) ( ) ( ) .R
N

N( , ) (5)

In this equation, Φ reflects the stochastic nature of surface topologies
produced during concrete cracking, as well as the current level of
opening and shear displacements. In order to obtain a formal expres-
sion, Walraven employed a 2D geometry where the crack surface is
nominally flat with perfectly circular protruding aggregates, globally
following a specified density and a specified distribution of radii (Fuller
curve). Also, the opening and shear displacements were assumed to be
homogeneous throughout the entire crack surface. In a 2D setup, any
contact patch A is simply characterised with a contact area a and an
inclination angle θ leading to:

=F Fa N N a dad dN( , , ) ( , ) .R (6)

Also, thanks to this simple geometry, the resistance force F(a,θ) can be
geometrically constructed. For a given opening displacement w and
shear displacement δ, the interlocking situation is as shown in Fig. 2.
The overlapping volume between mortar and aggregates (shown in red
colour on the Figure) allows to define a contacting plane resulting from
plastic deformation, and to associate it with a contact area and an in-
clination angle (a,θ). Therefore, the force produced becomes the fol-
lowing line integral

=F na l dl( , ) ( , )
a

0 P (7)

where the stress τP is naturally decomposed into a normal contribution
preventing interpenetration and a tangential component resulting from
Coulomb friction forces

= =
+

l p l
µ

µ p l
µ
µ

( , ) ( )
1

1
sin( )
cos( )

( )
sin( ) cos( )
cos( ) sin( )

P

(8)

where p is the normal load field and μ is the Coulomb friction coeffi-
cient. Under a perfectly-plastic assumption, p becomes the constant σpu

and we obtain the following expression:

=
+

F a a
µ
µ

( , )
sin( ) cos( )
cos( ) sin( )pu

(9)

With the final equation that Walraven produced being

=
+

F aN
µ
µ

a N da d dN
sin( ) cos( )
cos( ) sin( )

( , , ) .R pu
(10)

Actually, Walraven's equation is written in the form

=F FD h D h dD dh( , ) ( , ) .R (11)

where the probability density Ψ and the force F(D,h) are resulting from
an integration of the variable N followed by a change of variable (a,θ)
→ (D,h), where D represents aggregate diameters and h represents the
elevation (distance to crack plane) at which aggregates are cut. This
comes from the manner Walraven used to derive this expression (by

Fig. 2. (a) Idealized crack surface based on Two-Phase model's hypotheses. (b) Detail of an aggregate coming in contact with mortar. The red zone marks the region
where mortar is being plasticized. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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using Fuller's curve and density constraints). Therefore, the probability
for the number of contact patches is not appearing, even though it is
taken into account to obtain the analytical expressions reported in
Ref. [6].

Several remarks can be pointed out on Walraven's model. First, it is
only a 2D model with purely circular aggregates, leading to possible
errors, in computing F(D,h), coming from the limitations of the geo-
metry description. Second, the actual cracked surfaces have profiles
with a roughness generally characterised by a Hurst exponent H, which
ranges from 0.6 to 0.8 for naturally occurring rough surfaces [18, 19].
The Hurst exponent Hideal for the surface profile considered in Two-
Phase model is found out to be in the range 1.0 –1.1(for further detail
refer to Appendix A). This oversimplification of cracked surfaces leads
to possible errors in the probability density Ψ which accounts for the
number of contact patches. Third, there are only two parameters in the
model characterising the matrix (assumed to be homogeneous), namely
the plastic stress threshold σpu and the friction coefficient μ. These va-
lues are usually determined by fitting the experimental values. Last, the
assumed constitutive behaviour is perfectly-plastic.

The aim of the presented work is to analyse in depth the interlock
elasto-plastic mechanical response, which is modelled by the function F
(a,θ) in Eqs. (1) and (6). To that end, a 3D geometry made with few
spherical aggregates of the same radius will be employed, therefore
discarding any stochastic contribution. In the next section, the em-
ployed experimental setup will be introduced, immediately followed by
the achieved experimental results. A novel predictive model will be
presented in latest sections.

3. Experimental programme

3.1. Test-setup

To validate the Two-Phase model, 23 experiments respecting its two
main geometrical hypotheses (globally planar cracks and rigid, sphe-
rical aggregates) were carried out. To this purpose, three steel half-
spheres of identical diameter were fixed every 30mm to one of the sides
of a polished steel cuboid. The spherical shape was selected to match
the idealized aggregates of the Two-Phase model. To average the ma-
terial's local variability, three spheres were used for each test. In ad-
dition, the distance between spheres (spaced 7 to 10 times the sphere
radius) was set to limit the potential interaction between the contact
regions, to reproduce again in a close manner the basic assumptions of
the Two-Phase model. All steel parts were made with S235JR+C steel,
in order to avoid any potential rupture of the sphere (as would poten-
tially occur for lightweight or weak aggregate [20]). The specimens
were identical except for the diameters of the three half-spheres Dsteel,
which measured 6 or 8mm depending on the specimen. A formwork
was then fixed to the cuboid in order to cast concrete or mortar on top
of the surface with the three half-spheres. The final specimens consisted
thus of a steel part and a cement-material part and were 120mm wide,
110mm high and 50mm thick, as shown in Fig. 3c. The casting was
done using five different mixes with varying the maximum aggregate
size Dmax, as reported in Table 2. Series 3101, 3102 and 3103 were
made using concrete, while series 3104 and 3105 were produced with a
mortar mix similar to the one prescribed by EN 196-1 [21].

Fig. 4 provides some additional information on the aggregates used
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(a) (b)

Detail (b)
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Fig. 3. (a) Schematic representation of test setup (b) Detail of test setup: A — horizontal jack; B — load cell; C — holding plates; D — holding bars; E — sliders (c)
Schematic representation of typical specimen (d) Section through a sphere.
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for the different castings. The gravel used for #3102 consisted pre-
valently (> 90%) of limestone classified as medium-hard according to
the Swiss code SN670115 [22]. Castings #3101 and #3103 contained
mainly aggregates made of medium-hard limestone (∼85%, see ag-
gregate curves in Fig. 4 and details in Ref. [17], casting #06). Finally,
ordinary quartz-sand with a granulometry similar to the one of the
standard-sand prescribed by EN 196-1 [21] was used for the mortar
specimens (see Fig. 4c).

After casting, the specimens were cured under sealed conditions for
at least 28 days (typically around 6weeks) and then de-moulded and
prepared for testing. Devices measuring crack opening and sliding
across the interface between steel and concrete were fixed on the spe-
cimen, which was then glued on the steel plates of a 500 kN electro-
mechanical testing machine, shown in Fig. 3a and described more ex-
tensively in reference [17]. The machine was capable to impose dis-
placements in the vertical direction of the specimen, equivalent to a
Mode I opening. Through the addition of a 50 kN hydraulic jack in
horizontal position it was also possible to push sideways on the upper
half of the specimen, in order to apply Mode II kinematics to the ana-
lysed interface. Low-friction linear guides allowed for movement of the
upper part of the specimen during testing, and load cells enabled the
measurement of the applied vertical and horizontal forces. Using a
control unit with a closed-controlled loop it was possible to coordinate
the displacements applied in the two directions, and to apply pre-
defined Mixed Mode kinematics on the crack. These kinematics were
characterised by a constant opening angle α as shown in Fig. 1e, which
was one of the main test parameters in addition to the material prop-
erties and the half-sphere diameter Dsteel. A summary of the performed
tests is given in Table 3, where the first four digits of the specimen name
indicate the concrete or mortar mix.

The table includes two specimens tested with special kinematics:

• Specimen 310305 had no spheres crossing the steel/concrete inter-
face and was tested in Mode I to verify if adherence between the two
materials was present. The maximum tensile force which was
measured was about 20 N. Thus, the adherence between the planar
surfaces can be considered as existent but negligible compared to
the force measured during the other tests. This result is further
confirmed by the Mode I phase of test 310303 which leads to similar
results.

• Specimen 310303 was tested following Mode I kinematics until an
initial crack opening winit of 0.5mm was reached; then pure Mode II
was applied at constant crack opening (α=0°). During this second
phase, the measured forces increased until they reached the load
limit of the setup and the experiment had to be stopped. At that
instant both the vertical and the horizontal load measured about
16 kN. After removal of the specimen it could be seen that the high
forces had caused the steel spheres to plastically deform at their tips.
This shows that, without dilatation, aggregate interlocking forces
can reach very high values and the local stresses may reach the
plastic steel resistance, invalidating the geometrical assumption of
perfect spheres.

3.2. Tests with concrete specimens

The 12 concrete specimens were cast using three different mixtures
(Table 2, the specimens with mortar will be detailed later): Series 3101
and 3102 had a similar compressive strength but varied in maximum
aggregate size, while the concrete of series 3103 had a 50% higher
resistance. Moreover, a red pigment was added to the mix 3101,

Table 2
Mix designs for the used concrete castings. fc,Test Day is estimated in accordance
to MC 2010 [23] (values marked with an asterisk refer to values from a com-
parable casting).

Series #

3101 3102 3103 3104 3105

Dmax [mm] 8 16 16 2 2
Water [kg/m3] 177 195* 165 500 500
Cement [kg/

m3]
321 340* 330 1000 1000

Cement type CEMII CEMII CEMII CEMII CEMII
A-LL42.5N B-M-T-

LL42.5N
A-LL42.5N A-LL42.5N A-LL42.5N

Aggregates
[kg/m3]

1853 1817* 1880 3000 3000

fcm,28 [MPa] 40.2 38.7 61.1 38.3 44.3
fc,Test Day [MPa] 43.7 43.0 63.8 39.6 49.6
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Fig. 4. (a) Aggregates employed for castings 3101 and 3103 (b) Granulometric curves for concrete castings (c) Granulometric curve for mortar castings (values
marked with an asterisk refer to values from a comparable casting).

Table 3
Test specimens, spheres diameter and applied kinematics; the asterisks indicate
tests with special kinematics as described in the text.

Concrete specimens Mortar specimens

# Dsteel [mm] α [°] # Dsteel [mm] α [°]

310101 8 30 310401 6 30
310102 6 25 310402 6 20
310103 6 25 310403 6 15
310104 8 25 310404 8 20
310201 6 25 310405 8 25
310202 6 20 310406 8 30
310204 8 25 310502 6 25
310301 8 25 310503 6 15
310302 8 30 310504 8 15
310303 6 0* 310505 8 20
310304 6 25 310506 8 30
310305 0 90*

M. Pundir, et al. Cement and Concrete Research 125 (2019) 105855

5



allowing to better distinguish crushed sand and aggregates (Fig. 8).
Fig. 5 reports the measured forces for all Mixed Mode tests, normalised
as follows:

= =
f

F
A f f

F
A f3

and
3

,
cp

T

sp cp cp

N

sp cp (12)

where FT is the measured tangential force, FN is the measured normal
force, Asp = πDsteel

2/4 is the area of the horizontal projection of a
sphere and fcp is the equivalent plastic compressive resistance of the
material accounting for the material brittleness in compression and for
the fact that the plastification is a gradual process (with regions in the
softening phase while others attain the material strength [24, 25]).
According to Model Code 2010 [23], this value can be estimated as:

= =f f
f

f
, where 1cp f c f

c

c

,ref
1
3

c c (13)

A suitable value for fc,ref is 30MPa [23, 25]. Each test is plotted as
four curves in a graph with four axes, to better show the relationship
between the measured values of τ, σ, δ and w.

Some curves, like the ones relative to the shear stress of tests
310202, 310304, 310101 and 310104, follow a clear trajectory: they
start with a stiff, almost linear ascending phase, followed by a non-
linear phase as they approach the maximum shear load τmax and end
with a gradual softening phase. Others however do not behave so
consistently and present some scatter.

For example, during test 310102 the shear force started to increase
again after the first peak load. In other cases, like for test 310301, the
maximum shear force is not clearly defined and a large plateau is re-
corded. Finally, for test 310302, the shear force decreases very rapidly
after the peak load, before it reverts to the typical rate of other tests.

Such randomness can be potentially attributed to the heterogeneous
nature of the concrete material: when the steel spheres mostly interact
with the cement matrix and small sand particles, the behaviour is clear
and consistent. However, when the spheres enter in contact with a large
aggregate, a more random behaviour can be observed, depending on
the size, shape and hardness of the aggregate. For example, Fig. 8 (e)
shows the surface of the aforementioned specimen 310102 after the
test. A large aggregate (length > 10mm) has been clearly revealed by
one of the spheres scraping off the surrounding material.

With respect to the behaviour of specimen 310204, the results are
not considered valid for larger displacements as two parts of the device
measuring the crack opening and sliding entered in contact, influencing
the force transfer and resulting in the pronounced force plateau. The
test is thus marked with an asterisk in Fig. 5.

The values of τ and σ occurring when τ = τmax are marked with an X

in Fig. 5. Note that this does not correspond to the maximum value of σ,
as the normal force usually reaches its peak only after the maximum
tangential force is measured. According to the approach of Walraven (μ
is constant) this can only be explained by a change in the angle of the
plasticized region with respect to the crack plane (Fig. 2). These peak
values are compared to each other in Fig. 6, where they are plotted as a
function of the applied angle α. The plot shows a clear trend, as the
peak forces decrease consistently with increasing Mixed-Mode angle
regardless of the various used materials.

3.3. Test with mortar specimens

In order to limit the random material response observed for the
concrete specimens (direct contact of spheres and aggregates), 11
mortar specimens were additionally tested. The mix-design for the
material was prepared according to EN 196-1 [21], using ordinary sand
with =D 2max mm. Series 3105 had a higher compressive resistance on
the test-day compared to series 3104 and typically resulted in higher
forces. As shown in Fig. 7, the curves are better defined than the ones
for the concrete specimens, generally showing one clearly identified
force peak followed by the softening phase. The trends observed for the
concrete specimens remain visible. An exception is presented by tests
310403 and 310503 ( Dsteel = 6 mm,α=15°), where the forces remain
relatively high even after the peak force. A similar response in terms of

max and max was observed as for concrete specimens (see Fig. 7) with a
delayed occurrence of max with respect to max .

Dsteel= 6mm
310102 =25°
310103 =25°
310201 =25°
310202 =20°
310304 =25°
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Fig. 5. Experimental results for interlocking tests between concrete and steel spheres (a) Dsteel = 6 mm (b) Dsteel = 8 mm.
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Fig. 7. Experimental results for interlocking tests between mortar and steel spheres (a) Dsteel = 6 mm (b) Dsteel = 8 mm.

310101

large aggregate

(e)

(d)

scraped aggregate

scraped sand

displaced material

(a) (b)

(c)

compression strut

Fig. 8. Pictures of tested specimens: (a) Concrete surface of specimen 310204 after testing: the void due to the presence of the steel sphere and the damage due to the
applied kinematics are visible. A scraped aggregate is visible in the damaged zone; (b) Steel block after testing: crushed concrete material is visible on one side of the
spheres; (c)–(d) Concrete surface after testing: A red pigment was added to mix 3101 making the crushed, white material clearly visible; (e) Concrete surface of
specimen 310102 after testing: on the left, cohesive material pushed away by one of the spheres; on the right a large aggregate is visible next to one of the voids,
possibly explaining the anomalous softening behaviour of this test. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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4. Review and extension of the Two-Phase model

4.1. Review of original formulation according to Walraven

The interpretation of the described tests with steel spheres is made
by assuming that the distance between spheres is sufficient to avoid any
interaction between them. Therefore, a single sphere will be numeri-
cally modelled and a proper normalisation will be used to make the
comparison with experiments. Starting from the Two-Phase model gov-
erning Eq. (1), the probability density function Φ is now discrete since
randomness was fully removed, therefore leading to the simplified
shear resistance equation expressed after projection to the direction ey:

A=F F w D3 ( ( , , ))T steel (14)

where A is the region of space where contact/interlocking occurs. Si-
milar to experimental results, the total shear resistance force ⟨FT⟩ is
normalised by 3Aspfcp where Asp = πDsteel

2/4 and fcp is the equivalent
plastic resistance. In a 2D setup,A can be represented by the area a and
the inclination θ, which is not possible anymore for the more general
3D case. A is expressed as a function of the opening vector (w,δ). The
purpose of this section is two-fold. First an expression forA w D( , , )steel
is provided in the case of a spherical aggregate. Secondly a perfectly-
plastic constitutive behaviour will be used to compare with the ex-
perimental results. Few modifications are required to adapt the Two-
Phase model to the investigated case. By definition, we have in the
perfectly-plastic case:

A
A A

A A

= = +

= +

X e n X t X e

n X e t X e

F dS µ dS

dS µ dS

( ) ( ) ( ( ) ( ))

( ) ( )

P
y y

y y

pu

pu

A

pu

Ay
n

y
t

(15)

where σpu is the plastic threshold stress and is constant. n(X) and t(X)
are the direction vectors for normal and frictional forces respectively.

The surfaces Ay
n and Ay

t are the projected contact areas along ey di-
rection, following the convention of Walraven, now extended for 3D.

Comparatively to the projected Eq. (9) in 2D, we now have to de-
termine the contact patchA before calculating the integral in Eq. (15).
Such a contact patch can be identified geometrically, as Walraven does
in the 2D case. To this end, let us consider a rigid sphere of diameter D,
as seen in Fig. 9a. The crack opening displacement is applied to a
second spherical surface of same diameter, representing the opposite
mortar/concrete face (represented in red on Fig. 9b). The region of
overlapping/interlock between these two spheres is therefore re-
maining gray and measures A .

The integration over the contact patch A is computed by dis-
cretizing the surface into Nel finite elements, each with an area ae, a
normal ne and a tangent vector te as shown in Fig. 10. The tangent
vector te is defined as the unit vector mutually orthogonal to the normal
ne and a vector of the tangent plane normal to ey, i.e. te ∝ (ey ∧ne) ∧ne.
Thus, the expression of the projected contact areas along ey becomes:

= =
= =

n e t eA a A aandy yy
n

e

N

e e y
t

e

N

e e
1 1

el el

(16)

Fig. 11 shows the evolution of the projected contact areas (Ay
n and

Ay
t ), normalised by their respective Asp as a function of normalised

shear displacement for various displacement angles and sphere dia-
meters. The material parameters σpu and μ remain free parameters and
are obtained by fitting the experimental results described in Section 3.
The numerical model is thus fitted to each experimental result sepa-
rately, using the method of least squares. Each fitting yields values of
σpu and μ which are recorded and later cross compared (refer to
Appendix B). This procedure is used for fitting the concrete specimens
as reported in this section and will also be used for the mortar speci-
mens.

Fitting (σpu,μ) from Eq. (15) onto the displacement path, i.e. δ ∈
[0 mm, 1.0 mm], yields regression curves revealing that this model

Fig. 9. (a) Bottom sphere in an interlock-situation. (b) Crack-opening between bottom sphere (gray) and upper sphere (red) for a given shear opening δ and a vertical
opening =w tan . The interlocking contact patch A is the remaining gray region, visible because the bottom surface stays above the upper surface in this
configuration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. A spherical aggregate discretize into finite elements. The zoom view shows the normal and tangential vector acting on a finite element.
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cannot predict the entire shear resistance curve. This was expected
because of the rigid perfectly-plastic assumption, whereas the actual
onset of the experiment must be elasto-plastic. As a consequence, quite
disparate values of both σpu and μ are obtained by regression and even
physically impossible negative values can be observed for μ (refer
Table B.6). Thus, for analysis of the results, the value of the friction
coefficient is set to a physically-consistent value according to Walraven
( μ=0.4, [6]). Under this constraint, fitting only σpu yields values that
are acceptable both for concrete and mortar. However, Fig. 12 shows
that the global behaviour cannot be captured. As a matter of facts, only
an average behaviour roughly following the experimental curves can be
obtained. Similar conclusions can be observed from fitting against the
mortar specimens for the displacement path (δ ∈ [0 mm, 2.0mm]), as
seen in Fig. 13. It is natural to charge this drawback onto the perfectly-
plastic nature of the model, and to use it only for the softening parts of
experimental results (the post-peak stress regions). Obtained regres-
sions show a much better fit with experimental results. However, in all
cases, the best fitted friction coefficients are negative and physically

impossible (see Tables B.8, B.9). If μ is constrained to a fixed value,
again the average behaviour may be captured leading to acceptable
values for σpu, but the overall stress-resistance prediction curve remains
inaccurate (see Figs. 14 and 15). This works very well for concrete
samples, revealing that the presence of aggregates triggers an early
onset of plastic flow in the matrix. With mortar samples, on the other
end, the absence of confinement favors elasticity (or a delay in onset of
plastic flow), which might explain the mismatch with the Two-Phase
model.

The considerations concerning the obtained values of σpu and μ
demonstrate that the geometric model as described by Walraven is in-
complete and this for two reasons. First, the hypothesis that the matrix's
plastic behaviour dominates and the stress-strain relation of the matrix
is rigid-perfectly plastic is not applicable for the entire load path: the
initial loading phase (before the peak-stress) must be elasto-plastic.
Secondly, one has to realize that if the matrix behaves as a perfectly
plastic bulk during softening, the contact between matrix and aggregate
cannot be deduced from a simple geometric intersection of the pristine

Fig. 11. The evolution of projected contact areas Ay
n and Ay

t for different loading angles and sphere diameters. The normalised projected contact areas are in-
dependent of Dsteel.

Fig. 12. Concrete specimens: Regression of Eq. (15) to experimental results for
the entire shear displacement range (δ ∈ [0mm, 1.0mm]) where only σpu was
fitted with a prescribed μ=0.4.

Fig. 13. Mortar specimens: Regression of Eq. (15) to experimental results for
the entire shear displacement range (δ ∈ [0mm, 2.0mm]) where only σpu was
fitted with a prescribed μ=0.4.
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geometries. This aspect has already been considered in some previous
works [13, 14]. In addition, the potential degradation of the matrix for
very large displacements (as subjected to micro-crack development) is
neglected in the softening phase. This is at the source of the incoherent
predictions of the material parameter σpu. The ultimate goal of the
present work is to introduce a variation of Walraven's method that
addresses these issues, therefore allowing a description with physically-
sound free parameters. These issues are addressed by i) accounting for
the surface alterations after contact and ii) by introducing free

parameters βy and βz to account for the elasto-plastic deformation and
potential degradation of matrix during the initial loading phase and
mimic its effect on perfectly-plastic regime.

4.2. Two-Phase model enhancement: surface alterations

A consistent modification of the Two-Phase model is proposed in this
section to address the described inconsistencies. As previously stated, in
such a regime, the mortar/concrete will deform substantially, so that
the surface changes have to be taken into account to compute contact
surfaces.

To account for this, a possible strategy considers that the de-
formation of contact area can again be approximated in a purely geo-
metric sense. The idea is to remove any geometric interpenetration
between mortar and aggregate bodies created by the imposed homo-
geneous displacement (δ,w). Such a geometric configuration is illu-
strated in Fig. 16a. Because mostly mortar will undergo a plastic flow,
only its surface is modified by the vertical projection onto the aggregate
surface. Such a projection is done at each incremental step. Fig. 16b
shows the evolution of the contact area with and without considering
such a plastic alteration of the surface. Remarkably, the corrected
contact area now decreases as a function of δ.

The contact patchA is deformed as soon as the shear displacement
reaches the value corresponding to the peak stress. Fig. 17 shows the
evolution of projected contact areas after taking deformation into
consideration. With the corrected projected contact areas (Ay

n and Ay
t ),

the regression procedure presented in Section 4.1 can be employed
again.

The regression is done by considering σpu as free parameter with μ
fixed to 0.4 (trying to fit both σpu and μ leads potentially to un-physical
values similar to the ones presented in the previous section). Figs. 18
and 19 shows the regression curves for both concrete and mortar spe-
cimens.

4.3. Two-Phase model enhancement: elasto-plastic deformation of matrix

Fitting Eq. (15) with corrected contact area still gives a mismatch
with experimental stress-displacement curves. The origin of this dis-
crepancy is the projection strategy employed, which only crudely ac-
count for plastic deformations due to contact forces, and therefore leads
to inaccurate contact areas. During the pre-peak regime, where elasto-
plastic deformation occurs, only some portion of the contact surface
will plastify to take the shape of the steel aggregate. To illustrate this
point, we take an example of a steel aggregate indenting an elasto-
plastic material as shown in Fig. 20i. Allowing for interpenetration of
bodies, the contact areaA considered, based on our vertical projection
strategy, is shown in Fig. 20i-b in red. However, due to elasto-plastic
deformation the actual deformed profile will be different and the actual
contact area A * may be much smaller as shown in the Fig. 20i-c.
Fig. 20ii shows the elasto-plastic deformation of matrix and the cor-
rection of the contact area for the geometry considered in our case.

Therefore, the actual contact area will be less than the contact area
computed from our projection strategy. At the peak stress, when elasto-
plastic regime transitions to perfectly-plastic regime, the actual contact
area A * will need a correction factor.

A A A=* ep (17)

whereA is the contact area computed from vertical projection andAep
is the correction contact area, to be computed at the transition to per-
fectly plastic regime i.e. at peak stress. Eq. (15) is then modified to
account for the true contact area.

Fig. 14. Concrete specimens: Regression of Eq. (15) to experimental results for
the post-peak shear displacement range (δ ∈ [0.2 mm, 1.0mm]) where only σpu

was fitted with a prescribed μ=0.4.

Fig. 15. Mortar specimens: Regression of Eq. (15) to experimental results for
the post-peak shear displacement range where only σpu was fitted with a pre-
scribed μ=0.4.
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whereAep y, is the projection of the correction contact areaAep along ey

direction. Eq. (15) can be modified to compute the normal forces by
taking the projection along ez direction:
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where Az
n, Az

t and Aep z, are areas projected along ez direction. We as-
sume that the corrected contact areasAep y, andAep z, are proportional to
the A projected along ey and ez and can be correlated by introducing
parameter βy and βz:
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where Ay
n, Ay

t and Az
n, Az

t are calculated at ={ arg max ( )}y and at

={ arg max ( )}z respectively. As can be observed from the above

equationsAep y, andAep z, depend on the loading angle α, the diameter of
the sphere Dsteel and the parameters βy, βz.

This extended numerical model is again fitted to each experimental
result separately using the method of least squares. We fit Eq. (18) to
the experimental tangential forces to obtain regression values of σpu and
βy. The obtained value of σpu is then used for fitting Eq. (19) to the
experimental normal forces with βz as the only free parameter. Fig. 21
shows the regression curves for a fixed value of μ = 0.4 and σpu,βy and
βz as free parameters for concrete specimens.As can be seen, the post-
peak behaviour is captured accurately for concrete specimens. The
values computed for σpu of samples 310102 and 310201 (see Table 4)
are considered as outliers. As discussed in Section 3.2, for test 310102
the shear force starts increasing in the softening phase and for test
310201, a large plateau is reached (behaviour attributed to the sphere
coming in contact with a large aggregate). The other values obtained
for σpu/fcp are, for the majority of the cases, in the range of values 3 to 4.
Also, the values of βy and βz obtained from two different fittings are
consistent for a given geometry and loading angle, typically between
0.5 and 0.8. A detailed discussion is presented in next section about the
values obtained for σpu, βy and βz. Concerning the mortar specimens, the

Fig. 16. (a) Vertical projection of interlocked mortar surface (red) to the aggregate surface (gray) (b) Evolution of contact area before and after considering
deformation of interlocked region for α=30°. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 17. The evolution of projected contact areas Ay
n and Ay

t after considering deformation of interlocked region for different loading angles and sphere diameters.
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assumption that the perfectly-plastic regime starts right after the peak
stress does not seem to hold (see Fig. 22) and two post-peak regimes
seem to develop. Fitting Eq. (18) just after the peak stress yields too
large values of σpu. This discrepancy can be explained by the fact that
the mortar has a less plastic response than concrete (the plastification
allowing to measure the effective σpu is only reached at a late stage, ≈
1.0mm). This seems consistent with the experimental results when the
fitting starts after 1.0mm of displacement: the values of σpu are thus
similar to what was obtained for concrete specimens, which were made

of mortar with a similar compressive strength (but with larger scatter of
the results). It is also interesting to note that the values of βy and βz are
consistent with each other in all cases.

5. Discussion

The values of σpu predicted by the previously presented approach
yield valuable information allowing to interpret its nature in Two-Phase
models. As presented in Tables 4 and 5, σpu/fcp is in the same order of
magnitude as the ratio observed in various studies. For instance, the
analytical works [26] and [27] find σpu =3fcp in the rigid-plastic re-
gime during the indentation of an elastic-plastic half-space by a sphe-
rical rigid body. Also, for concrete it is observed that a highly confined
matrix should produce a higher effective strength, leading to much
larger values of σpu/fcp [28, 29]. Afterall, the proportionality factor be-
tween σpu and fcp depends on the heterogeneity of the bulk and on the
shape of the contacting surfaces.

Even if σpu is taken equal to fcp, Two-Phase models may provide
reasonable estimates of the peak tangential resistance in real cases with
rough cracked surfaces. This paradox can be explained with the in-
troduction of the statistics, which may compensate for the missing
proportionality factor. Let us recall the central equation of Two-Phase
models, as written by Walraven:

=F D h F D h dD dh( , ) ( , )R (22)

where Ψ(D,h) is the probability density of circular aggregates of dia-
meter D being intersected at elevation h, and F(D,h) is the force con-
tribution of this particular geometrical situation. The strategy of
Walraven was to write Ψ(D,h)= λ(D)ρ(D,h) as a product between the
probability density λ(D) of having an aggregate of diameter D and the
probability density ρ(D,h) of cutting such an aggregate at elevation h. A
first source of inaccuracy comes from the 2D projection the force F(D,h),
assuming that every slice of matter is not exchanging forces with its the
surrounding. Secondly, Walraven assumed that ρ(D,h)= 2/D which
seems to be an adhoc function decaying smoothly with the asperity
radius. Both these points may lead to a hidden modification of the
proportionality factor σpu/fcp, explaining how the peak shear resistance
could be captured with a wrong σpu value.

Nevertheless, it was demonstrated that obtaining the correct beha-
viour along the entire loading path needs an accurate prediction of the
contact area. Without a full resolution of the mechanical problem, an
area correction had to be introduced,Aep, which represents the error in
our geometrically-based contact area prediction. This obviously ne-
glected the elasto-plastic onset deformation of the matrix. This error
will depend upon fcp and on the arrangement of aggregates around the
steel spheres. Indeed, aggregates close to the interlock contact may
create obstacles which would trigger early plastic flows in the matrix,
therefore leading to small values of the correction area Aep.

All the raised points call for computations resolving explicitly the
plastic deformation occurring in the bulk. Only by using large scale
finite elements, with fracture, plasticity and contact algorithms, will it
be possible to obtain the accurate evolution of contact area and forces,
and therefore would enhance Two-Phase models predictive capacity.
Some more fundamental modelling difficulties are still to be accounted
for statistical Two-Phase models to describe aggregate interlocking in
cracked concrete:

• Aggregates are usually not spherical [30].
• Failures in structures may be triggered by the limited tensile capa-
city of the matrix, which will therefore develop cracks and thus
present a reduced strength [2].

• The range of aggregate sizes to be considered as part of the matrix
(and not as aggregate) is not precisely defined.

• Cracks are not straight planes, but have an undulated shape which
additionally influences the overall roughness [3].

Fig. 18. Concrete specimens: Regression of Eq. (15) to experimental results for
the post-peak shear displacement range considering deformation of contact area
where only σpu was fitted with a prescribed μ=0.4.

Fig. 19. Mortar specimens: Regression of Eq. (15) to experimental results for
the post-peak shear displacement range considering deformation of contact area
where only σpu was fitted with a prescribed μ=0.4.
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6. Conclusions

Two-Phase models can predict the shear resistance due to asperity
interlock. They encompass a statistical treatment, with a probability
density function of interlock situations, and geometrically computed
forces as key ingredients. In the past, such theories considered 2D ap-
proximations. A 3D extension to the force evaluation has been devel-
oped to predict the shear resistance measured during several experi-
ments of well-defined interlock configurations, where statistics can be
omitted: concrete and mortar samples have been loaded against three
steel spheres in order to stay close to the assumptions of Two-Phase
models, i.e. flat crack plane and spherical aggregates. The main con-
clusions of this investigation are listed below:

1. For all the presented experiments, both concrete and mortar, the
maximum interlock normal/shear stress (i.e. the normal/shear
strengths) normalised by the equivalent plastic resistance (fcp) are
shown to decrease with increasing loading angle (α). However, the
load-displacement curves differ strongly. Concrete exhibits a larger
scatter, and a generally smaller yield strength. This larger scatter
can be explained by the presence of large aggregates within the
vicinity of interlocking regions.

2. Walraven's hypothesis of perfectly-plastic deformation of the matrix

is not applicable during the initial loading stage for both concrete
and mortar. This is justified by the fact that the onset of deformation
is necessarily elasto-plastic. A clear plastic behaviour is only com-
pletely developed for relatively large penetrations of the aggregates
in the matrix (in any case after the shear stress peak).

3. It is demonstrated that strictly adopting Walraven's modelling as-
sumptions leads to un-physical values of the plastic threshold stress
(σpu) and the friction coefficient (μ). This is obtained by numerical

Fig. 20. (a) Indentation of an elasto-plastic material by steel aggregate (b) Contact area A( ) (in red) computed from vertical projection strategy (c) Actual contact area
A* (in red) due to elasto-plastic deformation of the material. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 21. Concrete specimens: Regression of Eqs. (18) and (19) to experimental results considering contact patch deformation during elasto-plastic regimes.

Table 4
Concrete specimens: Obtained values of σpu, βy and βz considering contact patch
deformation during elasto-plastic regime.

Fitted: Concrete specimens

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] βy [–] βz [–]

310101 30 8 140.91 3.64 0.4 0.52 0.64
310102 25 6 205.29 5.30 0.4 0.73 0.55
310103 25 6 121.43 3.14 0.4 0.49 0.56
310104 25 8 157.62 4.07 0.4 0.49 0.57
310201 25 6 469.05 12.30 0.4 0.85 0.86
310202 20 6 104.66 2.74 0.4 −0.39 2.59
310302 30 8 158.31 3.22 0.4 0.62 0.67
310304 25 6 186.95 3.80 0.4 0.29 0.23
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regression of the Two-Phase model onto the experimental results,
which yields negative values of the friction coefficient. Upon con-
straining μ=0.4 (as performed by Walraven) and applying the re-
gression only for the post-peak regime, physically-consistent values
of σpu are obtained. This yields however to a significant mismatch
with the stress-displacement experimental curves.

4. The novel approach proposed in this paper, allows to obtain a
matching post-peak response (dominated by the plastic behaviour of
the material), by refining the contact areas employed by the model.
First, the contacting area should account for the residual changes in
the matrix surface due to plastic deformation during the loading

path. This effect globally reduces the contact area for an increasing
displacement (which was not accounted in the original Two-Phase
model). Secondly, the elastic-plastic deformation of the matrix
should be accounted for in order to further improve the measure of
the contact area. A scalar correction factor (Aep) has been in-
troduced, yielding to very good agreements with all the experi-
mental results.
It was also shown that Aep is proportional to the geometrically
evaluated contact area, with β a proportionality factor, ranging from
0.5 up to 0.8.

5. Contrary to common usage of Walraven's theory, assuming σpu = fcp,
it was shown that the proportionality factor between σpu/fcp is not
constant. In order to predict the entire stress-strain curve (and not
only the peak value of the shear resistance), the proportionality
factor must be known. This remains difficult as it requires an ac-
curate prediction of the interlocking contact areas, only accessible
with the complete resolution of the mechanical problem (for in-
stance with large scale finite elements techniques, involving frac-
ture, plasticity and contact algorithms).
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Appendix A. Hurst exponent for Walraven's surface

A numerical concrete sample is generated for a given packing density (pk) and an aggregate range ( D D[ , ]min max ) using placing algorithm
proposed in Ref. [31]. The aggregates were assumed to be spherical in shape and the fuller distribution curve was used for distribution of aggregates.
The numerically fabricated concrete sample is cut at an arbitrarily plane according to the geometrical hypothesis of Two-Phase model to generate an
idealized crack plane Fig. A.23a. Fig. A.23b shows the Power Spectral Density [32, 33] and corresponding Hurst exponent for such a surface.
However, it should be noted that Walraven chose Dmin= 0.25mm, while it was set to 2mm for this study. Similarly, the packing density pk used in
Walraven's original model is around 70% while it is 60% for this study.

Fig. 22. Mortar specimens: Regression of Eqs. (18) and (19) to experimental results considering contact patch deformation during elasto-plastic regimes.

Table 5
Mortar specimens: Obtained values of σpu, βy and βz considering contact patch
deformation during elasto-plastic regime.

Fitted: Mortar specimens

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] βy [–] βz [–]

310401 30 6 123.41 3.40 0.4 0.61 0.83
310402 20 6 328.01 9.03 0.4 0.77 0.74
310404 20 8 188.80 5.20 0.4 0.56 0.49
310405 25 8 122.41 3.37 0.4 0.66 0.70
310504 15 8 328.76 7.80 0.4 0.57 0.32
310505 20 8 171.44 4.07 0.4 0.43 0.24
310506 30 8 130.12 3.09 0.4 0.79 0.79
310406 30 8 114.11 3.14 0.4 0.69 0.77
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Fig. A.23. (a) Idealized crack surface for 60% packing density and diameters in range [14mm, 2mm]. (b) Hurst exponent H for surface in (a).

Appendix B. Detailed results

Tables B.6– B.11 present the values of σpu and μ obtained for the various concrete and mortar specimens. Not all tests have been considered, as
310303 and 310305 where subjected to special kinematics and tests 310204, 310301 and 310302 had no clearly identified softening phase. Si-
milarly, the mortar specimens 310403, 310502 and 310503 have been omitted due to their anomalous behaviour during after the peak.

B.1. Review of original formulation according to Walraven

Table B.6
Concrete specimens: Obtained values of σpu and μ for concrete specimens when fitted over the shear displacement range (δ ∈ [0mm, 1.0mm]).

Fitted: σpu,μ Fitted: σpu

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] σpu [MPa] σpu/fcp [–] μ [–]

310101 30 8 124.55 3.22 −0.4 56.35 1.46 0.4
310102 25 6 −68.41 −1.77 −2.0 52.30 1.35 0.4
310103 25 6 96.37 2.49 −0.2 51.56 1.33 0.4
310104 25 8 51.73 1.34 0.8 68.32 1.76 0.4
310201 25 6 −114.42 −3.00 −1.5 49.45 1.30 0.4
310202 20 6 −88.62 −2.32 −2.7 122.53 3.21 0.4
310302 30 8 263.43 5.35 −0.8 52.55 1.07 0.4
310304 25 6 93.19 1.89 0.7 112.40 2.28 0.4

Table B.7
Mortar specimens: Obtained values of σpu and μ when fitted over the shear displacement range (δ ∈ [0mm, 2.0mm]).

Fitted: σpu,μ Fitted: σpu

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] σpu [MPa] σpu/fcp [–] μ [–]

310401 30 6 119.83 3.30 −0.5 36.11 0.99 0.4
310402 20 6 282.54 7.77 −0.4 86.37 2.38 0.4
310404 20 8 176.16 4.85 −0.3 74.53 2.05 0.4
310405 25 8 257.54 7.09 −0.7 46.63 1.28 0.4
310505 20 8 221.93 5.26 −0.3 99.03 2.35 0.4
310506 30 8 281.88 6.68 −0.7 48.86 1.16 0.4
310406 30 8 246.59 6.79 −0.7 40.45 1.11 0.4

Table B.8
Concrete specimens: Obtained values of σpu and μ for concrete specimens when fitted over the post-peak shear displacement range.

Fitted: σpu,μ Fitted: σpu

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] σpu [MPa] σpu/fcp [–] μ [–]

310101 30 8 187.39 4.84 −0.6 56.26 1.45 0.4
310102 25 6 600.18 15.50 −0.7 68.57 1.77 0.4
310103 25 6 149.67 3.86 −0.5 51.62 1.33 0.4
310104 25 8 193.58 5.00 −0.5 70.56 1.82 0.4
310201 25 6 547.45 14.35 −0.7 60.57 1.59 0.4
310202 20 6 190.92 5.01 0.0 131.08 3.44 0.4
310302 30 8 256.10 5.21 −0.8 50.78 1.03 0.4
310304 25 6 258.09 5.25 −0.3 115.35 2.34 0.4
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Table B.9
Mortar specimens: Obtained values of σpu and μ when fitted over the post-peak shear displacement range.

Fitted: σpu,μ Fitted: σpu

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] σpu [MPa] σpu/fcp [–] μ [–]

310401 30 6 189.63 5.22 −0.6 31.73 0.87 0.4
310402 20 6 437.14 12.03 −0.5 82.85 2.28 0.4
310404 20 8 288.77 7.95 −0.5 73.23 2.01 0.4
310405 25 8 264.98 7.29 −0.7 42.25 1.16 0.4
310505 20 8 379.15 8.99 −0.5 96.71 2.29 0.4
310506 30 8 307.40 7.29 −0.7 45.22 1.07 0.4
310406 30 8 258.25 7.11 −0.7 36.11 0.99 0.4

B.2. Two-Phase model enhancement: surface alterations

Table B.10
Concrete specimens: Obtained values of σpu and μ for concrete specimens when fitted over the post-peak shear displacement range considering surface alterations.

Fitted: σpu,μ Fitted: σpu

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] σpu [MPa] σpu/fcp [–] μ [–]

310101 30 8 1049.86 27.11 −1.1 62.18 1.61 0.4
310102 25 6 2827.30 73.01 −1.0 81.76 2.11 0.4
310103 25 6 532.79 13.76 −0.9 57.53 1.49 0.4
310104 25 8 721.59 18.63 −1.0 76.72 1.98 0.4
310201 25 6 2597.30 68.10 −1.0 72.22 1.89 0.4
310202 20 6 −89.85 −2.36 −3.3 146.43 3.84 0.4
310302 30 8 2046.80 41.60 −1.2 55.89 1.14 0.4
310304 25 6 559.52 11.37 −0.8 129.00 2.62 0.4

Table B.11
Mortar specimens: Obtained values of σpu and μ for concrete specimens when fitted over the post-peak shear displacement range considering surface alterations.

Fitted: σpu,μ Fitted: σpu

# α [°] Dsteel [mm] σpu [MPa] σpu/fcp [–] μ [–] σpu [MPa] σpu/fcp [–] μ [–]

310401 30 6 832.31 22.90 −1.1 43.54 1.20 0.4
310402 20 6 1655.60 45.56 −0.9 97.80 2.69 0.4
310404 20 8 1107.12 30.46 −0.9 83.50 2.30 0.4
310405 25 8 1357.28 37.35 −1.0 49.97 1.38 0.4
310505 20 8 1428.67 33.88 −0.9 110.61 2.62 0.4
310506 30 8 1881.46 44.61 −1.2 56.15 1.33 0.4
310406 30 8 1575.41 43.35 −1.2 45.04 1.24 0.4

References

[1] A. Muttoni, M. Fernández Ruiz, Shear strength of members without transverse re-
inforcement as function of critical shear crack width, ACI Struct. J. Am. Concr. Inst.
105 (2) (2008) 163–172 https://infoscience.epfl.ch/record/116126 (ACI Structural
Journal).

[2] F. Cavagnis, M. Fernández Ruiz, A. Muttoni, Shear failures in reinforced concrete
members without transverse reinforcement: an analysis of the critical shear crack
development on the basis of test results, Eng. Struct. 103 (2015) 157–173, https://
doi.org/10.1016/j.engstruct.2015.09.015 (Elsevier).

[3] F. Cavagnis, M. Fernández Ruiz, A. Muttoni, An analysis of the shear-transfer ac-
tions in reinforced concrete members without transverse reinforcement based on
refined experimental measurements, Struct. Concr. 19(1) (2018) 49–64, https://
doi.org/10.1002/suco.201700145 (Wiley).

[4] R.C. Fenwick, T. Pauley, Mechanisms of shear resistance of concrete beams, J.
Struct. Div. Proc. ASCE 94 (10) (1968) 2325–2350 https://cedb.asce.org/
CEDBsearch/record.jsp?dockey=0015765 (ASCE).

[5] H.P.J. Taylor, Investigation of the forces carried across cracks in reinforced beams
in shear by interlock of aggregate, Cement and Concrete Association, 1970, https://
trid.trb.org/view/21744.

[6] J.C. Walraven, Fundamental analysis of aggregate interlock, ASCE J. Struct. Div.
107 (11) (1981) 2245–2270 https://cedb.asce.org/CEDBsearch/record.jsp?
dockey=0010563.

[7] B. Li, K. Maekawa, H. Okamura, Contact density model for stress transfer across
cracks in concrete, J. Fac. Eng. 40 (1) (1989) 9–52 (The University of Tokyo).

[8] P. Gambarova, C. Karakoç, A new approach to the analysis of the confinement role
in regularly cracking concrete elements, Transactions of the 7th International

Conference on Structural Mechanics in Reactor Technology, H 1983, pp. 251–261
https://inis.iaea.org/search/search.aspx?orig_q=RN:15048850.

[9] S. Dei Poli, P. Gambarova, C. Karakoç, Aggregate interlock role in R.C. thin-webbed
beams in shear, J. Struct. Eng. 113 (1) (1987) 1–19, https://doi.org/10.1061/
(ASCE)0733-9445(1987)113:1(1).

[10] F.J. Vecchio, M.P. Collins, The modified compression-field theory for reinforced
concrete elements subjected to shear, ACI J. 83 (2) (1986) 219–231.

[11] J.S. Jacobsen, Constitutive Mixed Mode Behavior of Cracks in Concrete:
Experimental Investigations of Material Modeling, Ph.D. thesis Technical University
of Denmark, Kongens Lyngby, Denmark, 2012.

[12] P.M. Calvi, E.C. Bentz, M.P. Collins, Pure mechanics crack model for shear stress
transfer in cracked reinforced concrete, ACI Struct. J. (114) (2017) 545–554,
https://doi.org/10.14359/51689460.

[13] T. Ulaga, Betonbauteile mit Stab-und Lamellenbewehrung Verbund-und
Zuggliedmodellierung ETH Library, Ph.D. thesis ETH, Zurich, Switzerland, 2003,
https://doi.org/10.3929/ethz-a-004568673.

[14] R. Guidotti, Poinçonnement des planchers-dalles avec colonnes superposées forte-
ment sollicitées, Ph.D. thesis EPFL, Lausanne, Switzerland, 2010https://infoscience.
epfl.ch/record/150264.

[15] A. Muttoni, M. Fernández Ruiz, J.T. Simões, The theoretical principles of the critical
shear crack theory for punching shear failures and derivation of consistent closed-
form design expressions, Struct. Concr. 19 (1) (2018) 174–190, https://doi.org/10.
1002/suco.201700088.

[16] W.B. Fuller, S.E. Thompson, The laws of proportioning concrete, Trans. Am. Soc.
Civ. Eng. LIX (2) (1907) 67–143.

[17] M. Tirassa, M. Fernández Ruiz, A. Muttoni, Modern experimental research techni-
ques for a consistent understanding of aggregate interlocking, 12th fib International
PhD Symposium in Civil Engineering, Czech Technical University in Prague,

M. Pundir, et al. Cement and Concrete Research 125 (2019) 105855

16

https://infoscience.epfl.ch/record/116126
https://doi.org/10.1016/j.engstruct.2015.09.015
https://doi.org/10.1016/j.engstruct.2015.09.015
https://doi.org/10.1002/suco.201700145
https://doi.org/10.1002/suco.201700145
https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0015765
https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0015765
https://trid.trb.org/view/21744
https://trid.trb.org/view/21744
https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0010563
https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0010563
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0035
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0035
https://inis.iaea.org/search/search.aspx?orig_q=RN:15048850
https://doi.org/10.1061/(ASCE)0733-9445(1987)113:1(1)
https://doi.org/10.1061/(ASCE)0733-9445(1987)113:1(1)
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0050
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0050
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0055
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0055
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0055
https://doi.org/10.14359/51689460
https://doi.org/10.3929/ethz-a-004568673
https://infoscience.epfl.ch/record/150264
https://infoscience.epfl.ch/record/150264
https://doi.org/10.1002/suco.201700088
https://doi.org/10.1002/suco.201700088
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0080
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0080


Prague, Czech Republic, 2018, https://infoscience.epfl.ch/record/257222 (29-31
August).

[18] T.R. Thomas, Rough Surfaces, second ed., Imperial College Press, London, 1999,
https://doi.org/10.1142/p086.

[19] B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, On the nature of
surface roughness with application to contact mechanics, sealing, rubber friction
and adhesion, J. Phys. Condens. Matter 17 (1) (2005) 1–62, https://doi.org/10.
1088/0953-8984/17/1/R01 (IOP Publishing).

[20] B. Bujadham, K. Maekawa, Qualitative studies on mechanisms of stress transfer
across cracks in, Proc. JSCE 17 (451) (1992) 265–275, https://doi.org/10.2208/
jscej.1992.451.

[21] CEN European Committee for Standardization, EN 196-1. Methods of Testing
Cement – Part 1: Determination of Strength, CEN, 1994.

[22] VSS (Swiss Association of Road and Transportation Experts), SN670115 -
Gesteinskörnungen: Qualitative und quantitative, Mineralogie und Petrographie,
Zurich, Switzerland, 2005.

[23] fib (International Federation for Structural Concrete), fib Model Code for Concrete
Structures 2010, Ernst & Sohn. doi: 10.1002/9783433604090.

[24] A. Muttoni, Die Anwendbarkeit der Plastizitätstheorie in der Bemessung von
Stahlbeton, Ph.D. thesis ETH, Zurich, Switzerland, 1989, https://doi.org/10.1007/
978-3-0348-5598-3.

[25] M. Fernández Ruiz, A. Muttoni, On development of suitable stress fields for

structural concrete, ACI Struct. J. Am. Concr. Inst. 104 (4) (2007) 495–502, https://
doi.org/10.14359/18780.

[26] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985,
https://doi.org/10.1017/CBO9781139171731.

[27] R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, Oxford,
1950.

[28] F.E. Richart, A. Brandtzaeg, R.L. Brown, A Study of the Failure of Concrete under
Combined Compressive Stresses, Engineering Experiment Station Bulletin 185,
University of Illinois, 1928, http://hdl.handle.net/2142/4277.

[29] M.P. Nielsen, L.C. Hoang, Limit Analysis and Concrete Plasticity, third edition, CRC
Press, Boca Raton, Florida, 2010.

[30] I. Kalliomäki, A. Vehtari, J. Lampinen, Shape analysis of concrete aggregates for
statistical quality modeling, Mach. Vis. Appl. 16 (3) (2005) 197–201, https://doi.
org/10.1007/s00138-004-0172-3 (Springer).

[31] P. Wriggers, S.O. Moftah, Mesoscale models for concrete: homogenisation and da-
mage behaviour, Finite Elem. Anal. Des. 42 (7) (2006) 623–636, https://doi.org/
10.1016/j.finel.2005.11.008 (Elsevier).

[32] P.R. Nayak, Random process model of rough surfaces, J. Lubr. Technol. 93 (3)
(1971) 398–407, https://doi.org/10.1115/1.3451608.

[33] V.A. Yastrebov, G. Anciaux, J.F. Molinari, From infinitesimal to full contact be-
tween rough surfaces: evolution of the contact area, Int. J. Solids Struct. 52 (2015)
83–102, https://doi.org/10.1016/j.ijsolstr.2014.09.019 (Elsevier).

M. Pundir, et al. Cement and Concrete Research 125 (2019) 105855

17

https://infoscience.epfl.ch/record/257222
https://doi.org/10.1142/p086
https://doi.org/10.1088/0953-8984/17/1/R01
https://doi.org/10.1088/0953-8984/17/1/R01
https://doi.org/10.2208/jscej.1992.451
https://doi.org/10.2208/jscej.1992.451
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0105
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0105
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0110
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0110
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0110
https://doi.org/10.1007/978-3-0348-5598-3
https://doi.org/10.1007/978-3-0348-5598-3
https://doi.org/10.14359/18780
https://doi.org/10.14359/18780
https://doi.org/10.1017/CBO9781139171731
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0130
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0130
http://hdl.handle.net/2142/4277
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0140
http://refhub.elsevier.com/S0008-8846(19)30685-4/rf0140
https://doi.org/10.1007/s00138-004-0172-3
https://doi.org/10.1007/s00138-004-0172-3
https://doi.org/10.1016/j.finel.2005.11.008
https://doi.org/10.1016/j.finel.2005.11.008
https://doi.org/10.1115/1.3451608
https://doi.org/10.1016/j.ijsolstr.2014.09.019

	Review of fundamental assumptions of the Two-Phase model for aggregate interlocking in cracked concrete using numerical methods and experimental evidence
	Introduction
	Two-Phase model
	Experimental programme
	Test-setup
	Tests with concrete specimens
	Test with mortar specimens

	Review and extension of the Two-Phase model
	Review of original formulation according to Walraven
	Two-Phase model enhancement: surface alterations
	Two-Phase model enhancement: elasto-plastic deformation of matrix

	Discussion
	Conclusions
	Acknowledgments
	Hurst exponent for Walraven's surface
	Detailed results
	Review of original formulation according to Walraven
	Two-Phase model enhancement: surface alterations

	References




