# Experimental investigation of the cyclic properties of welds in mild structural steels



Selimcan Ozden (Master's Thesis)



Supervisors: Prof. Dr. Dimitrios Lignos & Prof. Dr. Alain Nussbaumer, Advisor: Dr. Albano de Castro e Sousa Resilient Steel Structures Laboratory (RESSLab), Swiss Federal Institute of Technology, Lausanne (EPFL)

## 1. OBJECTIVES

- Study the behaviour of the heat affect zones (HAZ) of welds under cyclic loading typical of structural steels joints in earthquake scenarios:
- Produce physical specimens representative of HAZs for experimental testing under uniaxial cyclic loading protocols (LPs);
- Obtain parameters of HAZ metals for common material models in order to (i) compare it to base material response and (ii) for future use in numeric welded steel joint simulations.

## 2. MATERIALS AND METHODS

 Target material: HAZ of S355J2+N structural steel from 15mm thick plate;





 $\label{lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:lem:eq:$ 

 Difficulty in manufacturing specimens for uniaxial tests from HAZs resulted in reproducing the base material's thermal loading during welding with a Gleeble machine in EPFL's structural engineering group (GIS);

Temperature
measurement
for current control

Electric current - Out



Heat in bottleneck zone of uniaxial specimen

Electric current - In

Fig.2 – Thermal loading of uniaxial specimen in Gleeble

- Various thermal loading protocols implemented in order to target the same microstructure and hardness of mild steel HAZs – cf. Fig.1;
- Performed uniaxial cyclic tests under ten LPs [de Castro e Sousa, et al., 2020]. in bespoke test-setup for HAZ and for base metal (control);

Uniaxial specimen



0.02 0.00 0.00 -0.02 -0.04 -0.06 Loading excursion

 $Fig.\ 3-Uniaxial\ cyclic\ test-setup$ 

Fig. 4 – Example load protocol

 Parameters obtained by solving an inverse problem for two material models: Voce-Chaboche (VC) and Updated Voce-Chaboche (UVC) [Harloper, et al., 2021].

#### 3. RESULTS

 Targeted microstructure (bainite) and hardness of around 210HV1 is obtained with 10° C/s cooling rate from austenitization temperature;





Left: overall bainite microstructure – optical microscopy and NITAL chemical attack. Right: scanning electron microscopy of low bainite islands.

Fig. 5 – Gleeble-simulated HAZ metallography.

 Main experimental observations: (i) yield-plateau not present in HAZ materials, (ii) HAZs work- hardens more the base metal, and (iii) HAZ has a lower fracture strain;





Fig. 6 – LP6 of incrementally increasing strains – Base vs. HAZ material

Fig. 7 – Estimated fracture strains from area reduction

 Parameters estimates for chosen material models provide good fit to test results:





Fig. 8 – Model fit to test data: one cycle to failure test– LP3

Fig. 9 – Model fit to test data: random load protocol – LP9

 VC and UVC model responses are very similar for HAZs—mostly due to the fact that HAZs do not show discontinuous yielding.

## 4. CONCLUSIONS

- HAZs are less ductile than base metals—a known fact which is corroborated by these experiments;
- Drop in fracture strain with material cycling shows that HAZs are as susceptible to ultra-low cycle fatigue as base metals;
- The material model parameters derived in this thesis will allow more
  accurate models of welded structural steel joints. This is a crucial
  aspect for studying the susceptibility to fracture (monotonic or
  cyclic) for significant strains as expected under earthquake loading.

#### REFERENCES

[Sun et al, 2019] - Solid-state phase transformation and strain hardening on the residual stresses in S355 steel weldments, Journal of Materials Processing Technology, 265, 173-184 [de Castro e Sousa et al., 2020] - Consistency in Solving the Inverse Problem of the Voce-Chaboche Constitutive Model for Plastic Straining, ASCE Journal of Engineering Mechanics, Vol. 146, Issue 9 [Hartloper et al., 2021] - Constitutive Modeling of Structural Steels: Nonlinear Isotropic/Kinematic Hardening Material Model and Its Calibration, ASCE Journal of Structural Engineering, Vol. 147, Issue 4