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Abstract
The State Representation Methodology (SRM) combined with the Frequency Slice Wavelet Transform (FSWT), which is a 
new time–frequency analysis tool, is proposed for assessing the condition of bridges on the basis of bridge monitoring data. 
First, this paper presents an overall description of the SRM method via FSWT analysis. It then shows, through numerical 
simulations, some novel characteristics and advantages of FSWT analysis in contrast to the conventional wavelet approach 
and the feature extraction accuracy of SRM analysis for the detection of bridge damage on the basis of monitoring data. The 
principal results obtained through this study can be summarized as follows: (1) details of a newly proposed SRM and its 
application to bridge condition assessment based on bridge monitoring data are introduced. The proposed SRM combined 
with the FSWT is validated as a novel time–frequency analysis tool for assessing bridge condition on the basis of bridge 
monitoring data. (2) New properties of FSWT analysis are demonstrated, and advantages in contrast to the traditional wavelet 
method are highlighted. Feature extraction in SRM analysis is precise for damage detection in a bridge system on the basis 
of monitoring data and using numerical simulations.

Keywords  Bridge health monitoring · Bridge condition assessment · Damage detection · State representation methodology 
(SRM) · Extracting accuracy

1  Introduction

Various structural health monitoring (SHM) approaches have 
been proposed with the aim of facilitating the maintenance 
of existing bridges, and many examples of such systems have 
been reported [1]. The implementation of a practical SHM 
system requires the integration of a number of technologies 
related to sensing, instrumentation and telecommunications. 

SHM features extraction (damage detection) techniques and 
performance evaluation and diagnosis methods. The accu‑
mulation, over a long period, of measurement data related 
to the bridge of interest is of particular importance. Such 
data include environmental conditions, such as temperature 
and humidity, as well as physical quantities directly related 
to structural characteristics, such as vibration, strain and 
displacement characteristics. These data are then used for 
estimating the present health status and future deterioration 
(damage) of the bridge [2–8]. Lifetime engineering based on 
monitoring data obtained from bridge structures is becoming 
one of the most important issues worldwide [2, 3]. Also, it 
is important to detect damage from a large amount of moni‑
toring data. Therefore, discovering damage information of 
a target bridge is a big challenge [4–8].

Figure 1 shows the importance of condition assessment 
in SHM research. This figure reveals that practical condi‑
tion assessment is still a basic problem in SHM research, 
although there is rich literature related to the topic of 
SHM. Focusing on damage and the vibration characteris‑
tics of bridge members, the authors have already proposed 
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an analysis technique called the Frequency Slice Wavelet 
Transform (FSWT) as a time–frequency analysis technique 
suitable for the preprocessing of large amounts of monitor‑
ing data [9, 10]. The authors have also developed the State 
Representation Methodology (SRM), a new technique for 
detecting damage by constructing feature vectors based on 
analytical results obtained from FSWT analysis [11, 12]. 
Figure  2 shows the procedure for detecting damage by 
expressing a damage-induced change with an SRM-based 
probabilistic model. Since there are many methods that can 
realize a monitoring data collection system, the first step of 
damage detection using SRM is related to the choice of sen‑
sor types, optimum sensor locations for damage detection, 
the big data collection system, etc. for the target structure 
to be monitored.

This paper discusses the characteristics and validity of 
the FSWT, which is a tool used for SRM-based probabilistic 
modeling, by comparing it with conventional methods. For 
example, the traditional methods based on frequency domain 

decomposition (FDD) are widely recognized as being sim‑
ple; however, they tend to often lead to lower sensitivity and 
accuracy of damage detection, because the power spectrum 
of the measured responses cannot be accurately estimated, 
particularly for highly damped systems and systems with 
severe modal interference and high noise. Meanwhile, there 
are some important questions with these approaches: The 
natural frequency, corresponding mode shape and damping 
coefficient usually change very slowly when a bridge system 
is deteriorating in an early stage; in other words, the bridge 
health condition is not always so sensitive with those param‑
eters. At the same time, since a complex system includes 
many structural parts, it has many frequency components, 
and they interfere with each other. It is thus difficult to use 
the FDD method to analyze a system in damage detection 
because it is impossible to get modal parameters exactly. It is 
necessary to use an overall view to recognize a system. One 
can assume that the system state is described by a certain 
(non-parametric) dynamic variable that could be described 

Fig. 1   Importance of condition assessment in SHM
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by a certain mathematical model, and a probability-based 
method would be better for describing its state because it 
contains many random factors.

In this study, we used the test results obtained from two 
types of experiments, namely, impact hammer tests and 
moving load experiments on simulated bridge girders with 
artificially introduced damage. Also, we discuss the charac‑
teristics of the SRM and FSWT as performed by following 
the procedures shown in Fig. 2 and considering operational 
conditions associated with scale parameters and other factors 
affecting damage detection accuracy.

2 � Characteristics of the SRM‑FSWT method

This section gives an outline of the basic concept of the non-
parametric description of a structural system’s state, called 
the State Representation Methodology (SRM). It focuses on 

the SRM idea and its application to bridge condition assess‑
ment based on bridge health monitoring data.

The maintenance of existing bridges on the basis of life 
cycle cost (LCC) has become an important research area in 
many countries worldwide. Therefore, efforts are underway 
in many (mostly industrialized) countries to develop and 
put into practical use various bridge management systems 
(BMSs) and structural health monitoring (SHM) systems. 
BMS-assisted structural health evaluation and remaining life 
estimation of bridges rely mainly on engineering judgment 
based on data obtained from periodic visual inspections of 
the bridges. In such evaluation or estimation, the degree of 
deterioration is estimated from deterioration curves specified 
for different deterioration mechanisms on the basis of accu‑
mulated inspection data. If future deterioration is to be pre‑
dicted, however, two conditions need to be met. One is that 
the deterioration mechanism must be known, and the other 
is that the progress of deterioration must be predictable. It 

Fig. 2   Procedure for damage detection by use of SRM
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cannot be denied, therefore, that the proposed method may 
give erroneous predictions under certain circumstances, such 
as when a number of factors interact with one another in a 
complex manner, or when damage has been caused by invis‑
ible factors (see, for example, Fig. 3).

Depending on the monitoring items of the bridge of 
interest, such as static deflection and dynamic displace‑
ment and acceleration, the SHM-assisted management 
approach also poses a number of problems in distinguishing 
between changes that directly affect the degree of progress 

of deterioration and changes that do not, from among a 
large amount of collected data. There is as yet no estab‑
lished method, for evaluating the structural soundness of 
bridges with sufficient accuracy with the assistance of struc‑
tural health monitoring alone. As a practical approach, it is 
necessary to make effective use of the conventional BMS 
approach in conjunction with SHM. If SHM is used as an 
aid, the amount of information that needs to be handled is 
far greater than in cases where a conventional approach, such 
as visual inspection, is used. In such cases, it is of critical 
importance, although technologically challenging, to iden‑
tify useful data among the accumulated monitoring data and 
extract relevant information efficiently [11].

Focusing on SRM, which is a newly developed method 
for rationally evaluating the present state (performance) of 
a structural system by analyzing a large amount of measure‑
ment data obtained continuously from a network of SHM 
system sensors and extracting useful information, this study 
evaluates the characteristics of SRM using bridge model 
girders. The SRM in this study uses the Frequency Slice 
Wavelet Transform (FSWT), which is a time–frequency 
analysis technique suitable for the preprocessing of a large 
amount of monitoring data, as a foundation on which to 
establish a new damage detection method that pays atten‑
tion to different types of damage to bridge members and 
their vibration characteristics. By applying a modal damp‑
ing function (MDF) to the analytical results thus obtained, 
amplitude envelope coefficients are extracted, and feature 
vectors are constructed. The proposed method is a new dam‑
age detection technique developed using the feature vec‑
tors constructed through the extraction process mentioned 
above. The proposed method makes it possible to distinguish 
between changes in data caused directly by deterioration and 
other changes by checking on the constantly changing like‑
lihood of feature quantities determined by SRM relative to 
time series monitoring data obtained by SHM, as well as 
structural health evaluation data obtained from the BMS. 
Figure 4 illustrates the process of structural health diagnosis 
by the proposed method.

2.1 � Concept of state representation methodology 
(SRM)

The state of a system is interpreted as the overall response to 
its internal and external factors, which essentially depends on 
the response of its structure or structural properties and natural 
environment. The quantitative expression of the system state 
is the description of the system responding to incentive fac‑
tors. If the response satisfies our expectation, the system state 
is considered as a normal state, and otherwise as an abnormal 
state. In usual circumstances or under normal use conditions, 
the system is in a stable state, which means that its state is con‑
stant, or generally fluctuates in the vicinity of a steady state. Fig. 3   Example of structural health diagnosis by conventional method
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Therefore, usually it is assumed that the state it is a steady 
random variable that often follows the normal distribution.

2.1.1 � System state representation

A basic vibration equation as a parameterized example is:

Although it is easy to determine the parameters M, C, and K 
for a single degree of freedom (S-DOF) system, in general, it is 
not easy to determine the parameters for a multi-DOF system, 
because M, C, and K are correlated within the system charac‑
teristics. From the vibration equation for an S-DOF system, 
the vibration frequency ω can be written as:

This can also be written as:

On the other hand, for a multi-DOF system, it can be writ‑
ten as:

or

(1)M��� + C�� + K� = 0

(2)�2 =
K

M
−

C2

4M2

(3)M =
K ±

√
K2 − (�C)2

2�2
orM = f (K,�,C)

∑
i

f (Ki,�i,Ci) = Mtotal = CONSTANT

(4)
∑
i

1

Mtotal

f (Ki,�i,Ci) = 1; CONSTANT

In this state, let us apply the Taylor formula to expand 
the function f (Ki,�i,Ci) to obtain:

This equation can be written more generally as:

If the state of the vibration system is denoted by the 
variable � then:

If the system is not changed, � is a constant value, and 
it is expressed as an implicit function of the system fea‑
ture parameters. In an actual existing bridge system, the 
parameters M, K, and C are not accurately known; how‑
ever, it is relatively easy to know the response parameters 
(�1,�2,… �n) from sensors. Then, the question is how 
to establish a function including the state variable � with 
(�1,�2,… �n) ? These functions are called the State Rep‑
resentation Equation (SRE) or State Representation Func‑
tion (SRF) of the system.

The following section will give more details of a SRE 
that can be approximated by a linear or nonlinear combina‑
tion of system features [12].

(5)
∑
i

Ai(Ki,Ci)�i + o
(
�1,�2,… �m

)
= 1

(5′)
∑
i

�i�i + o
(
�1,�2,… �m

)
= 1

(6)� =
∑
i

�i�i + o
(
�1,�2,… �m

)
= 1

Fig. 4   Flow of structural health diagnosis by the proposed method and what it is supposed to do
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2.1.2 � State representation equation (SRE)

There are a lot of responses in a complex structural system 
such as a bridge, that are involved in test data or experimen‑
tal data. It is impossible to obtain all of the system features 
from data as obtained by a finite number of sensors. There‑
fore, it is assumed that the system state of a complex sys‑
tem is a function of the system state space. A projector or a 
part of the system state can be revealed by means of limited 
observation, which will be possible to realize in an actual 
application. Naturally, at the current time, all of the system 
responses are considered as the system state space or feature 
space, denoted as H∞ , i.e.,

where each hi(t) is a projector of a system feature, called a 
system sub-response function. For example, in an experi‑
ment, if the input to a system having many responses is an 
excitation signal ri(t) , the output signal, si(t) as the test result, 
can be obtained by the sub-response function hi(t) using the 
following methods in the time domain:

In the frequency domain, it becomes:

Then, the sub-responses are:

Usually, hi(t) is independent of ri(t), i = 1, 2, 3,…∞.
Therefore, in SRM, for an objective system S, a nonob‑

jective condition state variable, � , is defined as � ∈ [0, 1] or 
� ∈ (0, 1) , which is a function of its state space:

This equation can be changed into the frequency domain:

Here, the main object in SRM is focused on the relation‑
ship between the system responses and its system state (fea‑
ture), � , in the system feature space H∞ . The SRM describes 
the system state and some system assessment methods when 
the system conditions have been changed.

In the SRM, if one regards the current system state as the 
normal state, this means that the state is subjected to expec‑
tation, as with safety, reliability etc., which can be viewed 
as state (feature) � = 1 , i.e.:

With the passage of time, the system exhibits some gradual 
deterioration in the structures, such as bridge, and it will depart 

(7)(h1(t), h2(t), h3(t),… hn(t)…) ∈ H∞

(8)si(t) = ∫
∞

−∞

ri(�)hi(t − �)d�, i = 1, 2, 3…∞

(9)Si(�) = Ri(�)Hi(�), i = 1, 2, 3…∞

(10)Hi(�) =
Si(�)

Ri(�)
, i = 1, 2, 3…∞

(11)� = f (h1(t), h2(t), h3(t),… hn(t)…)

(12)� = f (H1(�),H2(�),… Hn(�)…)

(13)
� = f (⋅) ≡ 1, if the system is always in the normal state

from the normal state; in a general sense, this is called the 
deterioration state and it can be assumed to be as follows:

In a complex system, it is very difficult to test the exact 
condition state with sensors. Therefore, the lowest level of 
state, herein noted c0 , was taken into consideration. At the 
same time, by means of a test, part of its responses to the 
environment, c0 , can then be estimated and represented using 
the following inequality:

Figures 2 and 8 show a conceptual procedure of the feature 
extraction by the above-mentioned SRM, where x is the sys‑
tem feature vector, � is the state variable, and � is the system 
structure alias parameter.

2.2 � Damage detection method based on SRM

2.2.1 � Basic idea of state representation

1.	 Extraction of a finite-dimension feature subspace to 
approximate the state function, f

Because the real representation function, f, is unknown, 
some properties related to the relationships between their fea‑
tures and the condition state may be correlated to be approxi‑
mated by a method (what kinds of features). In fact, f can be 
approximated by some mathematical expressions. The suc‑
cessful use of SRM is dependent upon the experimenter’s abil‑
ity to develop a suitable approximation for f (⋅).

Note: Hn is a finite-dimension subspace such that Hn ⊂ H∞ 
and state variable, � , can be limited on Hn ⊂ H∞ , i.e., 
𝜁 = f (h), h ∈ Hn ⊂ H∞.

2.	 Standardization of feature vector

It is necessary to standardize the unit representation of fea‑
ture vector, h, because of the non-parametric description.

3.	 Find system state support vector

L e t  u s  a s s u m e  s ys t e m  fe a t u r e  ve c t o r , 
x ∶= (x(1), x(2),… x(n)) ∈ Hn . If a constant vector w ∈ Rn 
called the system state support vector or feature director exists, 
then it needs to satisfy the following relation (equation):

(14)� = f (⋅) ≤ 1, always

(15)� = f (⋅) ≥ c0

(16)Let h ∈ Hn ⊂ H∞, h ∶=
h

‖h‖

(17)1 = ⟨w, x⟩ =
n�

k=1

w(k)x(k)
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This is the first-order model of state � and is given by:

If the system has only one response vector signal h ∈ Hn , 
the solution using the Least Squares Estimators method should 
be: w = h . However, if it is a multiple response vector, then let

Now let every response vector h ∈ Hn be a projector of 
the current system state along with its feature directors 
wi, i = 1, 2… m [15], and it has a weight: �i ≥ 0 and

Then,

In general, the state function includes parameter vector, α, 
which is written as:

The function f is a linear operator, and the vector α is herein 
called a system state parameter.

4.	 Modify the product relation for feature vectors by means 
of Kernel Function Method

Since the representation of a system state with a first-order 
linear model is limited, it is a very useful idea to use a kernel 
function method to solve a high-order nonlinear representation 
of the system state.

A Kernel Function Map, x → �(x) , is defined herein as 
a nonlinear function that changes from the current variable 
space into another parameter space, which can practically be 
understood as a transformation for the sensor’s function. Then, 
we redefine ⟨s, x⟩, s ∈ Hn, x ∈ Hn as,

Here, k(s, x) = ⟨�(s),�(x)⟩ is a kernel function. There are 
many choices for the kernel function, k(⋅, ⋅).

In the present paper, the kernel functions recommended in 
Ref. [15] are used:

(18)� = f (w, x) =

n∑
k=1

w(k)x(k)

(19)wi = hi, i = 1, 2… m

(20)�i ∈ (0, 1),

m∑
i=1

�i = 1, w =

m∑
i=1

�iwi

(21)1 = ⟨w, x⟩ =
�

m�
i=1

�ihi, x

�
=

m�
i=1

�i⟨hi, x⟩

(22)f (�, x) =

m�
i=1

�i⟨hi, x⟩

(23)⟨s, x⟩ = ⟨�(s),�(x)⟩ = k(s, x), s ∈ Hn, x ∈ Hn

(24)

k(s, x) = exp

(
−
d(s, x)

�2

)
, where, � is the SRM scale.

Let us define � =
∑m

k=1
�kk(hk, .) as an operator, called 

the system state support operator or the system state repre‑
sentation operator, which is a highly nonlinear operator. It is 
important to find a support operator to represent and assess 
the system state.

5.	 Computing support vector

Take a train set of system feature vectors represented by 
TS.

It follows that:

2.2.2 � SRM algorithm

The SRM algorithm for computing the state variable, 
� = f (�, x) or � = f (�, x) using Eq. (28) with a kernel func‑
tion such as Eqs. (24), (26), etc. is shown here for linear 
or quadratic convex programming, which are similar to the 
familiar Support Vector Machine (SVM) methods. An exam‑
ple is shown below in the form of steps to make it more clear 
and easy to understand:

STEP 1: Input: (x1, x2,… xm), xi ∈ Hn , matrix A from 
Eq. (28), iteration number N, and error ε.

STEP 2: Set initial point, x = e/n, D0 = diag(�0i).
STEP 3: k = 0.
STEP 4: while k < N, do:
STEP 5: Set Dk = diag(�ki).
STEP 6: Compute search direction, pk , such as, set 

pk = DkA
TADke.

(25)

Here, d(s, x) =

n∑
i=1

(si − xi)
2

si + xi
or d(s, x) =

(
n∑
i=1

||si − xi
||p
)1∕p

(26)k(s, x) = (s ⋅ x)d, (‖s‖ = 1, ‖x‖ = 1)

(27)

Define the Gram matrix ∶ G =

⎛⎜⎜⎜⎝

k(x1, x1), k(x1, x2),… k(x1, xm)

k(x2, x1), k(x2, x2),… k(x2, xm)

…

k(xm, x1), k(xm, x2),… k(xm, xm)

⎞⎟⎟⎟⎠
e = (1, 1,… 1)T.

(28)
min

‖‖‖‖
(
I −

1

n
eeT

)
G�

‖‖‖‖
2

Subject to
∑
i

�i = 1, 0 ≤ �i ≤ 1, i = 1, 2, 3,… m

(29)� = f (�, x) =

m∑
i

�ik(xi, x)
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STEP 7: Compute optimal search step t to satisfy 
min
tp<e

‖‖ADk(e − tpk)
‖‖2 , and set �k+1 = �k − tDkpk.

STEP 8: if ||�k+1 − �k
|| ≤ �, break and go to STEP 11.

STEP 9: set k = k + 1; go to STEP 4.
STEP 10: end while.
STEP 11: stop.

2.2.3 � Damping feature extracting algorithm

The features of a damping vibration signal include its fre‑
quency and damping coefficient. It is usually not easy to 
get the damping coefficient exactly because, in general a 
damping vibration signal always includes many interference 
frequencies or noise. In this paper, it is assumed that the 
envelope curve of a damping vibration signal is: x = Ae−�t as 
obtained by FSWT time–frequency transformation. There‑
fore, we can get the transient damping coefficient at any 
frequency and at any time based on FSWT [12].

3 � Time–frequency space analysis method 
in SRM

In this study, with the aim of extracting damping-related 
information multi-dimensionally, damping parameters are 
extracted from the time–frequency space, and the amount 
of change in each damping parameter under the influence of 
changing vibrations is taken into consideration. Beside the 
FSWT [Eq. (30) shown below] mentioned earlier, methods 
for performing time–frequency space analysis from vibra‑
tion data as shown in Fig. 5 include the short-time Fourier 
transform (STFT) using Eq. (31), the continuous wavelet 
transform (CWT) using Eq. (32) and the Wigner–Ville dis‑
tribution (WVD) using Eq. (33) [13, 14].

However, no definite study results have been provided 
that show which of the above-mentioned methods is more 
resistant to noise in the vibration data to be analyzed com‑
pared with other methods and which method is more suitable 
for use in structural health diagnosis.

where f̂ (u) is Fourier transport, and p̂(𝜔) is the Frequency 
slice function (FSF).

where w is a window function.

(30)Wf (t,𝜔, 𝜅) =
1

2𝜋 ∫
+∞

−∞

f̂ (u)p̂∗
(
𝜅
u − 𝜔

𝜔

)
ei u tdu

(31)F(�, b) = ∫
∞

−∞

f (t)w(t − b)e−j�tdt

(32)T(a, b) = ∫
+∞

−∞

x(t)�∗
a,b
(t)dt

where ψ (t) is a mother wavelet.

where the asterisk means the complex conjugate.
This study, therefore, shows that the FSWT is more suit‑

able for SRM than the other time–frequency space analysis 
methods mentioned above from the viewpoint of resistance 
to noise. Meanwhile, the effect of the characteristics of vari‑
ance σ (SRM scale parameter) on detection accuracy in cases 
where a Gaussian kernel is used in SRM-based probabilistic 
modeling is discussed.

4 � Noise‑related characteristics of different 
time–frequency space analysis methods

Figure 6 shows the differences in time–frequency space 
analysis results obtained using two types of sample vibra‑
tion data. The basic sample vibration was defined using the 
wave function expressed by Eq. (34) (see Fig. 6a):

where s = s1 + s2 + s3 + s4 . This wave is a simulated 10-sec‑
ond wave derived using the settings shown in Table 1.

Figure 6f shows a simulated wave obtained by adding 
25% white noise to Fig. 6a. Figure 6b, g shows scalogram 
calculation results for Fig. 6a, f, respectively, obtained using 
the FSWT. Similarly, Fig. 6c, h shows the results obtained 
using the STFT; Fig. 6d, i, the results obtained using the 
CWT (Morlet); and Fig. 6e, j, the results obtained using the 
WVD. Each figure also shows the parameters (e.g., scale) 
used in the analysis.

First, the analytical results in Fig. 6b, c show that for the 
frequencies (signals) of 15 Hz, 35 Hz, and 50 Hz (twice) 
produced from the simulated wave, the CWT (Morlet)-based 
scalogram clearly shows their peaks in time–frequency space 
but is slightly inferior in peak clarity to the FSWT-based 
scalogram. Comparison of Fig. 6g and h reveals that the 
CWT (Morlet)-based scalogram has lost clarity because of 
the noise, indicating that obtaining clear peaks is difficult.

Next, comparison of Fig. 6b and d reveals that the ana‑
lytical results obtained using the STFT are better in clar‑
ity than the results obtained using the CWT (Morlet), and 
are almost as good as the results obtained using the FSWT. 
Comparison of Fig. 6g and i reveals that, like the analytical 
results obtained using the CWT (Morlet), the STFT-based 
scalogram loses clarity because of noise, indicating that 
extracting clear peaks is difficult.

(33)P(t,w) = 2∫
∞

−∞

s(t + �)s∗(t − �)e−j2�td�

(34)

s(t,A, f , 𝜍, 𝜃, t0) =

{
Ae−2𝜋f 𝜍t cos

(
2𝜋fdt + 𝜃

)
0

t ≥ t0
t < t0
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Comparison of Fig. 6e and j shows that regardless of 
noise, the analytical results obtained using the WVD do not 
show clear peaks in the time–frequency space.

These results indicate that compared with representa‑
tive conventional time–frequency space analysis methods, 
namely, CWT (Morlet), STFT and WVD, the FSWT-
based analysis method excels in showing clear peaks in the 
time–frequency space for vibration frequency (signal) and in 
resistance to noise. It is therefore evident that as a time–fre‑
quency space analysis method, the FSWT is more suitable 
for SRM than the other methods.

5 � Experimental studies

The SRM scale concept was implemented to study the 
difference between two states of the system. The accuracy 
of detecting feature quantity differences when convert‑
ing a parameter (structural parameter) for evaluating the 
condition (e.g., damage) of the bridge of interest (damage 
detection) to a probabilistic model by applying SRM that 
makes use of the above-mentioned characteristics of the 
FSWT is theoretically affected by the setting of the SRM 
scale parameter σ [11]. This study, therefore, evaluated 
the effect of the scale parameter σ on damage detection 

Fig. 5   Examples of results of 
time–frequency space analysis 
of vibration data and their com‑
parison [9, 10]
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Fig. 6   Differences in time–frequency space analysis results obtained using two types of sample vibration data [9, 10]
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results using the results of two types of experiments car‑
ried out using simple bridge models with different types 
of known damage, namely, moving load experiments car‑
ried out using girders and impact hammer tests conducted 
using a bridge model consisting of three girders.

5.1 � Characteristics of SRM‑based detection method

Let f(x) be a present state function of a structural system. Let 
Hn be a finite feature Hilbert space assumed to be incorpo‑
rated in the response H∞ of every structural system. Then, a 
feature vector expressing the present state of the structural 
system can be obtained as follows:

Here a probabilistic model of a perceptron-type neural 
network with an intermediate layer as shown in Fig. 7, giv‑
ing an output of a certain probabilistic density from an arbi‑
trary input vector, is regarded as an equation of state, and an 
arbitrary function can be obtained:

(35)x = (x1(t), x2(t), x3(t),… xn(t)) ∈ Hn ⊂ H∞

(36)� = f (x) ∈ [0, 1]

SRM is the process in which this equation of state is 
determined from a given feature (input) vector (see Fig. 8). 
Since the state representation equation (SRE) thus deter‑
mined can be defined in the finite feature Hilbert space, it 
can be derived by defining an arbitrary inner product func‑
tion like Eq. (37):

Thus, the problem can be reduced to the problem of mini‑
mization and optimization using Eq. (37) as a variable. In 
Eq. (37), k(xi, x) is called a kernel function, k(⋅, ⋅) . Many 
kernel functions have been proposed, such as the d-degree 
polynomial kernel, the radial basis function kernel and the 
sigmoid kernel [10]. For the purposes of this study, the 
Gaussian kernel shown in Eq. (38) is used for SRM:

Following the setting of the SRM scale parameter σ, the 
kernel function of Eq. (38) is determined, and the minimiza‑
tion–optimization problem expressed by Eq. (37) is solved 
using the gradient method (see Fig. 8). In Eq. (38), σ is a 
scale parameter to be determined by the user as appropriate 
within the range 0 < 𝜎 ≦ 0.5.

5.2 � Test description

5.2.1 � Moving load experiment

Two types of verification tests using bridge model girders 
were carried out: single-girder moving load experiments and 
impact hammer tests using a bridge model girder structure 
consisting of three girders.

Figure 9 illustrates the girder used for the single-girder 
moving load experiment. In the single-girder moving load 
experiment, a moving load designed to simulate a vehicle 
was made to move on a simply supported girder, and verti‑
cal acceleration was measured at three points located along 
the girder (see Fig. 9). Seven types of girders were prepared 
for the single-girder experiments: an undamaged wide-
flange steel beam and six types of steel beams with different 
degrees of artificially introduced lower-flange damage (stiff‑
ness reduction) (see Figs. 10, 12).

5.2.2 � Impact hammer test

In the impact hammer test conducted using a three-girder 
bridge model, accelerometers were installed on the bridge 
model girder structure shown in Fig. 11, and vibrations 
were measured at nine points on the bridge model girder 

(37)� = f (�, x) =

m∑
i

�ik(xi, x)

(38)k(xi, x) = exp

(
−
d(xi, x)

�2

)

Table 1   Data on simulated 
waves

s A f (Hz) ζ θ t0

s1 1 15 0.01 0 2 s
s2 2 50 0.01 0 2 s
s3 1 35 0.01 0 4 s
s4 2 50 0.01 0 4 s

Fig. 7   Derivation of the equation of state using of a perceptron-type 
neural network
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structure by installing accelerometers and exciting the girder 
structure with a hammer impact. Figures 12 and 10 (shown 
earlier) show information on the undamaged members and 
artificially damaged members of the bridge model girder 

structure used, including their details such as the degrees 
and locations of damage. Figure 13 illustrates the bridge 
model girder structure used in the experiments and the 
locations of the nine accelerometers. In the experiments, 

Fig. 8   Process to determine the equation of state (state probability distribution) from a given feature vector

Fig. 9   Moving load experiment using a single-girder specimen
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damaged girder locations were changed among Girders 1, 2 
and 3. For each of those locations, tests were conducted for 
no damage, minor damage (about 20% stiffness reduction) 
and major damage (about 40% stiffness reduction) cases and 
the damage location combinations shown in Fig. 10. For 
each of those combinations, a hammer impact was given 
at a total of nine locations (intersections B1 to D3 of Cross 
Beams 1, 2 and 3 and Girders 1, 2 and 3) to vibrate the 
bridge model girder structure, and vertical acceleration data 
were recorded. This experiment was carried out ten times 
at each location. The sampling rate was 1000 Hz, and the 
measurement (sampling) time was 15–20 s for the moving 
load test and 5 s for the impact hammer test.

5.3 � Discussion

Figure  14 shows examples of acceleration waveforms 
observed in the moving load experiment and the impact 
hammer test, and Fig.  15 shows the FSWT-based 
time–frequency space analysis results. The analytical 
results obtained by the FSWT show frequency (Hz) (in 
spatial representation, frequency and time) on the horizon‑
tal axis, time (s) (in spatial representation, amplitude) on 
the vertical axis, and the brightness of the color represents 
power.

To evaluate the state of the bridge model girder structure 
by applying SRM, it is necessary to calculate the coefficient 
α (damping parameter) in the amplitude envelope x = Ae−αt 
(see Fig. 4) and use it as a feature quantity. By applying 
the modal damping function (MDF) to the data obtained 
through FSWT-based conversion, the coefficient α can be 
calculated for any time–frequency range. This characteris‑
tic is used to define the feature extraction range in terms of 
feature blocks (FB) and construct feature vectors. This seg‑
mentation approach makes it possible to deal with changes 
in natural frequency by the FSWT, which is implemented to 
transform the time domain into the time–frequency domain.

Figures 16 and 17 show FSWT-converted time–fre‑
quency space data (see Figs. 14, 15) divided into 80 and 
100 blocks, which were obtained by dividing the converted 
time–frequency space data into 20 blocks along the fre‑
quency axis and four blocks (moving load experiment) or 
five blocks (impact hammer test) along the time axis. The 
steps for the feature extraction algorithm were as follows:

Fig. 10   Dimensions of intact members and artificially damaged members (artificial damage given to lower flange)

Fig. 11   General view of bridge model girder structure consisting of 
three girders [9, 10]
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STEP 1: Compute the FSWT expression for each sensor 
response, and denote it by Wi(t,�, �) , i = 1, 2,… Ns , where 
Ns is the number of sensors.

STEP 2: Take the maxima of ||Wi(t,�, �)
|| , i.e., 

|W|M = maxt≥0,�≥0,i ||Wi(t,�, �)
|| and record (tM ,�M , |W|M) 

as a trigger condition.
STEP 3: Define the frequency feature sampling line (FSL) 

and time feature sampling line (TSL), and record Mf, the total 
number of FSLs, and Mt, the total number of TSLs. The small 

block is called a feature block (FB), as shown in Figs. 16 and 
17.

STEP 4: Compute the modal damping feature at each fea‑
ture block as

(39)
�ipq = MDF(||Wi(t,�, �)

||)
||||| (t,�) ∈ FBpq

,

i = 1, 2,… Ns, p = 1, 2… Mf , q = 1, 2… Mt

Fig. 12   Intact and damaged members of bridge model girder structure (lower flange of girder) [9, 10]

Fig. 13   Configuration of three-girder bridge model girder structure and locations of accelerometers
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STEP 5: Define: Vi = (W
M1
, �ipg) i = 1, 2,… Ns, p = 1,

2… Mf , q = 1, 2… Mt , where

where E(⋅) means the average value, and Vi is the time–fre‑
quency feature (TFF) vectors of the system.

Here, a real experiment using the laboratory 
bridge monitoring system is considered. Let Ns = 11 , 
Mf = 300,Mt = 3 , and there are 1200 features for each 
sensor. Thus, the acceleration sensor data contains data 
for 9 hammer impacts × 11 acceleration sensors × 10 test 
iterations = 990 groups, and there are 990 × 1200 = 1.1 M 

(40)Wipq = E(||Wi(t,�, �)
||)
||||| (t,�) ∈ FBpq

features, which is a big number. This is an obvious reason 
why the SRM is a large-scale problem.

Feature quantities are extracted by applying Eq. (41) to the 
feature blocks thus defined, and the results are substituted in 
an MDF. The coefficient α in the amplitude x = Ae−�t enve‑
lope obtained by arbitrary domain FSWT was calculated at 
multiple locations, and the coefficients thus determined were 
used as feature vectors for damage detection. The first step in 
calculating the coefficient α is the calculation using Eq. (41) 
when t ∈ [0, T] ⊂ (0,+∞):

(41)S(xn) =
1

T

T

∫
0

xndt, n = 0.5, 1, 2, 4

Fig. 14   Examples of acceleration waveform obtained from moving load experiment and time–frequency space analysis results obtained by 
FSWT
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The calculation of Eq. (41) is easy, and the calculated 
value, S(xn) thus obtained is substituted in Eq. (42) to calcu‑
late the coefficient α:

In this study, the value of α for each feature block calcu‑
lated from the measurement data obtained from the experi‑
ments carried out for all combinations mentioned earlier was 
used as an input, and a state probability distribution model 
(probabilistic model) was constructed using SRM.

(42)
� = 4

�
S2
�√

x
�
S
�
x2
�
− S3(x)∕

�
S2
�√

x
��

S
�
x2
��

∕T

Figures 18 and 19 show examples of calculated block-by-
block values of damping parameter α for the bridge model 
girder structure in a sound condition obtained from the mov‑
ing load experiment and the impact hammer test, respec‑
tively. These results indicate that feature quantities in a block 
increase when there is a peak frequency in the block which 
represents the damping characteristics of a multi-model sig‑
nal by a frequency slice algorithm.

Two values of the SRM scale parameter σ, namely, σ = 1/2 
and σ = 1/8, were examined in evaluating the effects of dif‑
ferent scale parameter values on damage detection results. 
Also, SRM-based state variable values determined by fol‑
lowing the steps shown in Fig. 8 were compared to examine 

Fig. 15   Examples of acceleration waveform obtained from impact hammer testing and time–frequency space analysis result obtained by FSWT 
[9, 10]
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how the state probability distribution changes in the no-
damage girder cases and damaged girder cases, respectively.

Figure 20a and b compares the state probability distri‑
butions (σ = 1/2 and σ = 1/8) in the no-damage girder case 
and the major global damage case (Type C member) (see 
Fig. 10) observed in the moving load experiments conducted 
using separate girders. These results do not indicate any sig‑
nificant differences due to the SRM scale, but they do show 
that the histogram tends to shift leftward and concentrate 
as damage grows. Figure 21a and b compare the state prob‑
ability distributions of the no-damage three-girder bridge 
model and the damaged three-girder bridge model in which 

a Type C member is used as Girder 2 ((1) σ = 1/2, (2) σ = 1/8) 
in the form of histograms like the results of the moving load 
experiment. These results indicate that at σ = 1/2 the histo‑
gram does not show any significant differences in changes 
although relatively heavy damage was anticipated, while at 
σ = 1/8 the histogram shows significant differences due to 
damage.

As these analytical results indicate, since the Gaussian 
kernel scale parameter for SRM greatly affects the detec‑
tion accuracy, the quality of detection results is adversely 
affected if a large value like σ = 1/2 is used. The reason is 
thought to be that as the value of the SRM scale parameter 
σ increases, the distribution of probability densities output 
to the probability variable becomes more or less flattened so 
that the feature necessary for detection accuracy becomes 
less discernible. It is therefore necessary to use a more or 
less focused SRM scale parameter for the probability vari‑
able expressing a damage-related feature quantity.

Fig. 16   Examples of blocks in time–frequency space defined for 
moving load experiment

Fig. 17   Examples of blocks in time–frequency space defined for 
impact hammer testing [9, 10]

Fig. 18   Example of single-girder damping parameter extraction in 
moving load experiment [intact member (Type A member)]

Fig. 19   Example of damping parameter extraction from intact bridge 
model girder structure in impact hammer test
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6 � Conclusions

In this study, a new method for damage detection (per‑
formance evaluation) from a large amount of continually 
collected measurement data by applying the State Repre‑
sentation Methodology (SRM) was proposed, and a num‑
ber of time–frequency analysis methods necessary for the 
implementation of the proposed method were compared 
and discussed. As part of the study, the SRM scale param‑
eter, which can affect damage detection accuracy, was also 
evaluated experimentally.

The results obtained from this study are as follows:

1.	 Using sample vibration data, a comparison was made 
of a number of representative time–frequency analy‑
sis techniques, including the Frequency Slice Wavelet 
Transform (FSWT), the short-time Fourier transform 
(STFT), the continuous wavelet transform (CWT) and 
the Wigner–Ville distribution (WVD). The comparison 
showed that the FSWT makes it possible to accurately 

extract peaks in the time–frequency space and is supe‑
rior to the other methods in resistance to noise. The 
FSWT, therefore, is more suitable than the other meth‑
ods for use with SRM.

2.	 When SRM is used, the SRM scale parameter σ of the 
Gaussian kernel affects the damage detection accuracy. 
If the SRM scale parameter is not properly set to deal 
with the input vector variability, the detection accuracy 
may be adversely affected. To realize high-accuracy 
damage detection by use of the SRM, it is necessary to 
use a setting for σ of at least about 1/8.

3.	 The state representation methodology (SRM) is intended 
for a non-parametric description of a system state 
described by state variables. The state variables are cal‑
culated by the state representation equation (SRE) to 
express a steady state of the system. The SRM is a use‑
ful method for bridge condition assessment in structural 
health monitoring (SHM).

Fig. 20   a State probability density distribution (histogram) at σ = 1/2: 
no damage versus major global damage (Type C member) (single-
girder case, moving load experiment). b State probability density dis‑
tribution (histogram) at σ = 1/8: no damage versus major global dam‑
age (Type C member) (single-girder case, moving load experiment)

Fig. 21   a State probability density distribution (histogram) at σ = 1/2: 
no damage case versus Type-C-member-for-Girder-2 case (impact 
hammer test using a three-girder bridge model). b State probability 
density distribution (histogram) at σ = 1/8: no damage case versus 
Type-C-member-for-Girder-2 case (impact hammer test using a three-
girder bridge model)
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