Seismic Rehabilitation of Deficient Steel Braced Frames with Conventional and Innovative Retrofit Techniques

Valériane Matthey, Master Student, Academic year 2019-2020

Supervisor: Prof. Dr. Dimitrios G. Lignos

Resilient Steel Structures Laboratory (RESSLab), Swiss Federal Institute of Technology, Lausanne (EPFL)

1. OBJECTIVES

EPFL

- Investigate the seismic behavior of a steel Concentrically Braced Frame (CBF) using Non-Linear Static **Analysis and the Performance-Based Earthquake Engineering**
 - Model the structure with the concentrated plasticity approach
 - Highlight the structure main deficiencies
 - Compare them to the actual damages of the structure after the 2011 Tohoku-Oki Earthquake

- Propose seismic retrofit solutions

- Based on the Capacity Design: New Chevron braces; New X-braces
- High-performance system: Rocking Braced Frame
- Compare the performance of the retrofit solutions

2. STEEL CBF STRUCTURE

Two-story Parking Garage with CBF structure

- Columns: HSS 200x200x9, S235
- Beams:
 - E-W direction: H-350x180x7x11, S235
- *N-S direction*: H-450x200x9x14, S235
- Braces: O-165x6, S275
- Single-lap gusset plates, creating a 12-mm eccentric load transfer to the braces
- CBF span length:
 - E-W direction: 4500 mm - N-S direction: 7500 mm

- Location

Oroshimachi District, Sendai (Japan)

Fig. 1: Parking Garage: (a) Photo; (b) Floor plan

3. EARTHQUAKE

The structure suffered the 2011 Tohoku-Oki Earthquake

- Magnitude M_w 9.0, 200 seconds long
- Recorded by station MYG013 of NIED and station N°23 of DCRC within the Oroshimachi District

- Observed Deficiencies after the event

- Most of the 1st story gusset plates fractured in the E-W direction and were severely bent in the N-S direction
- Plastic Hinge appeared in the beam due to the unbalanced load from the braces Residual drift: 1% in the E-W direction; negligible in the N-S direction

Level 2 spectrum -Level 1 spectrum -0.2*Earthquake spectrum Period [sec] Fig. 4: Spectrum

Fig. 2: Fractured Gusset Plates

Fig. 3: Beam deformation

4. NUMERICAL MODEL

- Non-linear model in OpenSees, using the concentrated plasticity approach

Beam Hinge, zero-stiffness rotational material

Column/Beam Rotational Plastic Spring, Modified IMK deterioration model

Brace Rotational Springs, Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening Node

elastic Beam-Column element

Rigid element

Brace Displacement-based element (Fiber section) Beam Center Force-based element (Fiber section)

5. NON-LINEAR STATIC ANALYSIS

- The Braces can't develop their buckling and tensile resistance

Due to premature fracture of the gusset plates

- Assessment according to ASCE/SEI 41-13

- Target displacement: $\delta_t = 100 \, mm$
- Local Criteria:
 - Braces: do not fulfill any criteria
 - Column rotation: fulfill IO, LS, CP
- Beam rotation: fulfill IO, LS, CP
- Seismic retrofit is needed

6. SEISMIC RETROFIT

6.1 CONVENTIONAL SEISMIC DESIGN

- New Chevron Braces and Gusset plates

- According to the Capacity Design rules
- 8-t_{GP} elliptical clearance

Fig. 9: new Chevron CBF

Fig. 11: Global response

- Assessment according to ASCE/SEI 41-13

- Target displacement: $\delta_t = 8 \ mm$
- Local Criteria:
 - Braces: fulfill LS, CP
 - Column rotation: fulfill IO, LS, CP - Beam rotation: fulfill IO, LS, CP

- New X-Braces and Gusset plates
 - According to the Capacity Design rules
 - 8-t_{GP} elliptical clearance

Fig. 10: new X-bracing CBF

Fig. 12: Global response

- Assessment according to ASCE/SEI 41-13

- Target displacement: $\delta_t = 18 \ mm$
- Local Criteria:
 - Braces: fulfill LS, CP
 - Column rotation: fulfill IO, LS, CP
 - Beam rotation: fulfill IO, LS, CP

6.2 HIGH-PERFORMANCE SYSTEM

- Rocking Braced Frame

- Flag-shaped hysteretic response
- Uplift of the column bases
- Friction energy-dissipating devices

Needs the strengthening of the gusset plates

rig. 13: Giodai response of the RBr			
			$F_{\rm s} = 200 \text{ kN}$
Fuse Yield Moment	M_{fsy}	[kNm]	900
Uplift Moment	M_{up}	[kNm]	3060
Flag height	M_{flag}	[kNm]	1800
Frame yield moment	$M_{\rm y}$	[kNm]	3960
Overturning moment	M_{u}	[kNm]	4313
Self-centering	SC	[-]	4,53
Global Uplift	UL	[-]	4,53
Energy dissipation	ED	[-]	23%
Max. Uplift		[mm]	75

Beam Hinge, zero-stiffness rotational material

Column/Beam Rotational Plastic Spring, Modified IMK deterioration model Brace Rotational Springs, Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening

elastic Beam-Column element

Brace Displacement-based element (Fiber section)

Beam Center Force-based element (Fiber section)

Parallel Vertical Spring: rigid-no tension (ground) + rigid-plastic (fuse) materials Horizontal Ground Spring; rigid-no tension material

-Base Case

new X

-RBF

-new Chevron

7. NON-LINEAR DYNAMIC ANALYSIS

- Comparison

- Max. Base Shear Force: Base case > new Chevron Braces > new X Braces > RBF
- Maximal SDR: Base Case > RBF > new X Braces > new Chevron Braces
- Residual SDR: Base Case > new Chevron Braces > new X braces > RBF
- The RBF is the more performing system The RBF has the less retrofit effort and less damages after an earthquake