/ PROJET DE MASTER SECTION DE GÉNIE CIVIL

Experimentation on hydraulic fracturing of Barre granite: from hydrofracturing to hydroshearing

Auteur(e)s: Arabelle de Saussure Encadrement: Prof. Lyesse Laloui ¹

¹ Soil Mechanics Laboratory (LMS) EPFL

MOTIVATION AND GOALS

Enhanced Geothermal Systems (EGS) constitute a large renewable energy source for electricity production.

- → Hydraulic stimulation in deep dry rock to reactivate existing fractures by injecting pressurized water
- → Understand better the mechanisms of hydraulic fracturing for EGS: induce shear failure in Barre granite

APPROACH

Interaction between hydraulic fractures and pre-existing, non-pressurized flaws Identification of shearing under different flaw geometries and loading conditions

EXPERIMENTAL SETUP

Prismatic specimens containing two pre-cut flaws

- Inputs: flaw geometries, uniaxial or biaxial external load
- Results: pressure and volume data, visualization of crack development with high-speed and highresolution imagery

ANALYTICAL INVESTIGATION

Stress state evolution around a pressurized opening

Type of failure induced by .
stress and pressure evolution .

Model to develop a biaxial experimental procedure to induce shear failure

CRACKS AND GRAIN STRUCTURE

- → Visible crack propagation is highly influenced by the large grains in Barre Granite
- → Micro-cracks develop in the form of white areas in shear fracture process zone

REFERENCES

Morgan, S. P., Johnson, C. A., & Einstein, H. H. (2013). Cracking processes in Barre granite: fracture process zones and crack coalescence. *International journal of fracture*, 180(2), 177-204.

da Silva, B. G., & Einstein, H. (2018). Physical processes involved in the laboratory hydraulic fracturing of granite: Visual observations and interpretation. *Engineering Fracture Mechanics*, 191, 125-142.

FROM HYDROFRACTURING TO HYDROSHEARING

→ Identification of crack scenarios

→ Shear failure under a combination of biaxial external stress and hydraulic pressure: dilatancy, en echelon crack patterns and sliding

