ENAC / PROJET DE MASTER 2018-2019 SECTION DE GÉNIE CIVIL

Dimensionnement d'un pont bow-string en acier S690QL – Etude particulière à la fatigue

Auteur: Maxime Rassineux

Encadrement: Prof. Alain Nussbaumer 1 / Martin Garcia 1

INTRODUCTION & BUT

Actuellement, l'immense majorité des vérifications à la fatigue sont réalisées à l'aide de méthodes uniaxiales. Ce projet vise à déterminer si cette approche est viable. A titre de prétexte, le remplacement du pont sur le Rhône à hauteur de St-Triphon est choisi. L'ouvrage dimensionné statiquement est un pont bow-string réalisé en acier de haute qualité S690QL prévu pour accueillir quatre voies de circulation.

CALCUL DES LIGNES D'INFLUENCE

A l'aide des modèles FLM3 & FLM4 de la norme *EN 1993-2* les lignes d'influence au droit des différentes sections critiques ont pu être déterminées.

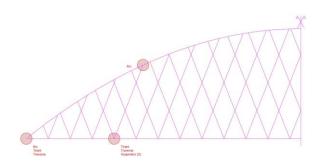


Fig. 2 : Position des détails étudiés

CLASSIFICATION DES DÉTAILS

Chaque section étudiée est composée de multiples détails. La classification de chacun d'eux s'est notamment faite sur la base des normes Suisses et Européennes. Ci-contre, les différents détails qui existent sur la section du tirant. Le même travail a été fait pour les sections des arcs et des suspentes.

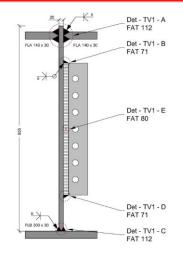


Fig. 3 : Catégorisation des détails du tirant

CALCUL UNI ET MULTIAXIAUX

Les calculs uniaxiaux ont été réalisés selon deux méthodes :

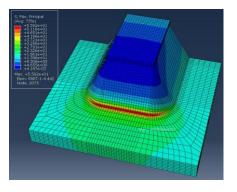
- Equivalence de dommages (I)
- Cumul des dommages (II)

Les calculs multiaxiaux ont été faits selon les formules de trois ouvrages : la norme *EN 1993-1-9*, la norme *SFS 2378* et les recommandations de l'*IIW*.

Dans un souci de clarté seuls les résultats du tirant sont explicités.

CALCUL UNI ET MULTIAXIAUX

Détail	$\Delta\sigma_{\text{E}}$ - $\Delta\tau_{\text{E}}$	Δσ – Δτ	$\Delta\sigma_{C}-\Delta\tau_{C}$	Check (I)	Check (II)
	[MPa]	[MPa]	[MPa]	[-]	[-]
TV1 – B – 0	69.20	25.89	FAT 71	1.32	0.00
TV1 – B – 19	48.96	21.01	FAT 71	0.93	0.00
TV1 – D – 19	12.92	5.30	FAT 71	0.25	0.00
TV1 – E – 19	30.89	12.67	FAT 80	0.52	0.00
B – B570 – 19	119.21	48.91	FAT 100	1.61	0.72


Tab. 1 : Résultats uniaxiaux (contraintes tangentielles en italique) - Tirant seul

Détail	EN 1993	SFS 2378	ΙΙW (Δσ)	IIW (ΣD)
	[-]	[-]	[-]	[-]
TV1 – M1 – 19	0.86	1.20	1.20	0.00
AV1 – M1 – 30	0.26	0.44	0.44	0.00
AV1 - M2 - 30	0.01	0.15	0.15	0.00
A – B684 – M1	0.25	0.42	0.42	0.00
A – B694 – M1	0.65	0.79	0.79	0.00

Tab. 2 : Résultats multiaxiaux – Tous détails (AV1 = Arc ; A = Gousset suspentes)

MODÉLISATION ÉLÉMENTS FINIS

La vérification des calculs manuels a été faite pour l'assemblage du tirant sur le logiciel Abaqus[®]. Ce programme permet de représenter de la manière la plus exacte possible le comportement d'une structure ou d'un de ces éléments.

A l'aide des contraintes principales, la vérification des principaux détails a été faite via la méthode *Effective Notch Stress* qui permet l'usage d'une courbe de fatigue bilinéaire unique *FAT225*.

Fig. 4 : Contraintes principales d'une attache longitudinale

En conclusion, la variante avec des demi-ailes soudées à l'âme est la plus efficace. Il est aussi nécessaire de prévoir un gousset transversale soudé sur toute la hauteur ainsi que sur les ailes.

Détail	$\Delta\sigma_{max}$	D_{σ}	$\Delta \tau_{\text{max}}$	D _τ
	[MPa]	[-]	[MPa]	[-]
Attache V1	19.71	0.0003	9.84	0.0000
Attache V3	56.98	0.0637	23.77	0.0000
Gousset V0	220.83	13.4103	94.10	1.4659
Gousset V3	62.97	0.1043	28.76	0.0003

Tab. 3: Résultats Abaqus® avec méthode ENS – Attache V3, voir Fig. 4 – Gousset V3, gousset sur hauteur complète

¹ Resilient Steel Structures Laboratory (RESSLab) EPFL