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Abstract. At off-design operating points, Francis turbines develop cavitation vortex rope in the
draft tube which may interact with the hydraulic system. Risk resonance assessment by means
of eigenmodes computation of the system is usually performed. However, the system response
to the excitation source induced by the cavitation vortex rope is not predicted in terms of
amplitudes and phase. Only eigenmodes shapes with related frequencies and dampings can be
predicted. Besides this modal analysis, the risk resonance assessment can be completed by a
forced response analysis. This method allows identifying the contribution of each eigenmode
into the system response which depends on the system boundary conditions and the excitation
source location. In this paper, a forced response analysis of a Francis turbine hydroelectric
power plant including hydraulic system, rotating train, electrical system and control devices is
performed. First, the general methodology of the forced response analysis is presented and
validated with time domain simulations. Then, analysis of electrical, hydraulic and
hydroelectric systems are performed and compared to analyse the influence of control
structures on pressure fluctuations induced by cavitation vortex rope.

In the recent years due to tremendous development and integration of renewable energy resources
(NRE), water turbines and pump-turbines are key technical components to achieve both primary and
secondary power grid control. The fast change of power generation by NRE is impacting the required
operating range of hydro units going from overload down to part load. At this off-design operating
points, hydraulic machines experience flow instabilities being excitation source for the complete
hydroelectric system. For instance, Francis turbines develop cavitation vortex rope in the draft tube
which may interact with the hydroelectric system and resonance or instability phenomena can be
experienced. Usually, modal analysis of the system is performed to identify the eigenmodes of the

system. This

can be completed by a forced response analysis yielding the contribution of each
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eigenmode into the system response depending asyghem boundary conditions and the excitation
source location.

Stability analysis of hydroelectric systems inchglhydraulic system, rotating train, electricalteys
and control devices based on eigenmodes computatiosually performed [1]. However, the forced
response in the frequency domain was limited toahalysis of hydraulic systems [2-7], electrical
systems [8] or hydroelectric systems with simptifteansfer function of the hydraulic part [9,10hiF
paper goes further and presents the applicatiothief method to hydroelectric systems including
detailed hydraulic models, even if similar studysvperformed with time domain simulations [11,12].

In the first section, the general methodology @f filrced response analysis is presented and \edidat
with time domain simulations. Then, analysis ofcaieal, hydraulic and hydroelectric systems are
performed and compared to analyse the influenceouwitrol structures on pressure fluctuations
induced by cavitation vortex rope developed intthbine draft tube.

2. Forced Response Technique

2.1. Transfer Matrix

For SIMSEN, system dynamics is described accortbintpe following set of first order differential
equations:

(A <[8] X +[c] 0 +V (X,0) W
With:

X the state vector witim components;

- U the input vector withp components;

- [A] and[B] the nonlinear state global matrices of dimensfomsn] ;

- [C] the input matrix of dimensio[‘nx p] ;

-V ( X ,U) the boundary conditions vector with components.
System’s outputé? are formulated through the following set of eqoiasi

Y =[D].X +[E]U )

With:

- Y the output vector witlgj components;

- [D] the output matrix of dimensim{qx n] ;

- [E] the feedthrough matrix of dimensio[ﬁx p] .
Frequency response technique is based on lineaseteaf equations [13]. Indeed, sinusoidal input to
a linear system generates sinusoidal response aathe frequency. Hence, the set of equationssts fi
linearized around the soluti<{n>zo,UO} by considering small perturbations:
{XO +X
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The resulting linearized set of equations is wnits follows:

[A]E2X < [8 2% +[c |2

4)
dY =[D| X +[E | 8U
The input vectordU contains both set points of regulatals g @Nd excitation sourcekJ ources -
V)
oU = ™ 5
|:5Usourca:| ( )
Applying the Laplace transformation to the setiffedential equations, it yields:
[A]BBX (s)=[B]|@X(s)+[C]@U (s) o
- _ -1 _ R 6
X (s)=(s -[A]"f8]) FA] )@ (s)
Using equation (2), the relation between the systemtput and the input is made:
- - -1 - -
N (s)=|[D](s (Al fm]) WAl el [E] |0y

oY (s)=[M(s)]rau (s)
With [M (s)] the matrix transfer functions of dimensianI] which relates the system outpd‘f’

to the input vectodU . Considering a system with 2 input excitation sest the third system’s output
JY, can be represented through the block diagram givefigure la. The frequency response of a

system whose matrix transfer functior{iM (s):| is given by:

(M(i)]=[M(9)], ., ®
Since input excitation, forced response and theesy#self are sinusoids, an alternate way is & us
phasors, see Figure 1b.
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Figure 1la. Block diagram of the frequency Figure 1b. Block diagram expressed with
response. phasors for sinusoids inputs.
2.2. Validation of the forced response

A forced response analysis tool has been integratetie SIMSEN software based on the above
mentioned methodology. This tool uses the systertricea provided by SIMSEN and the user



specifies excitation sources into the system irregjency range to analyze the response in the
frequency domain. Since time integration of difféi@l equations is not performed, the forced
response technique is less time consuming tharomparig time domain simulations including
excitation sources. This new tool is validated bynparing time domain simulation with frequency
response.

2.2.1. Hydraulic system

The first validation is performed for a hydrauligseem featuring a Francis turbine generating unit a
constant speed (dynamics of rotating inertia agdemted) connected to a penstock of 1’100 m length
(named “Pipel”), see Figure 2. The draft tube (rdriieipe2”) of the turbine is modeled with a
downstream pipe of 36m length in which momentumitation source is applied to represent pressure
fluctuations induced by a cavitation vortex roptarelard pipe model of constant cross section with a
wave speed of 300m/s is used for the draft tube Bawever advanced models of draft tube could be
used for this study taking into account divergembrgetry and convective terms [14]. With a gross
head of 315m, the turbine nominal power is 200MWhwi rotational speed of 375 rpm.

Figure 2. Forced response of
a hydraulic system with
momentum excitation source
OH in the turbine draft tube.

Eigenmodes of this system are given by the eigeegahnd the eigenvectors of the linearized state

global matrix defined b)[A]_l[B,] . Francis turbine is modeled as a quasi-steady Ihl;a(@, w, y)

defined from turbine characteristics work whichn@nlinear function of the flow rate, the rotational
speed and the guide vane opening. Linearizatighisffunction is performed to obtain the linearized
state global matrix [15]. Damping and oscillatisaduency of the eigenmodes are given respectively
by the real part and the imaginary part of the dempigenvaluess = a + jw given in Table 1. The

method also provides purely real eigenvalues cpomding to system time constants, which are not
reported in this paper. With a spatial discret@atf 20 pressure nodes in the penstock and 3yreess
nodes in the draft tube, 23 hydraulic eigenmodaseadHi, are found from 0.37 Hz to 7.7 Hz.

Table 1 Eigenvalues of the hydraulic

system.

Name s=a+jw f (Hz)
H1 -1.61+j 2.35 0.37
H2 -1.13+ [ 5.42 0.86
H3 -0.75+ | 8.48 1.35
H4 -0.26+ j11.3¢ 1.81
H5 -0.06+ j13.5¢ 2.16
H6 -0.57+j16.1¢ 2.58
H...

H23 -0.10+ j 48.3¢ 7.70




Combined with the computation of the eigenmodegeft response is performed with the momentum
excitation source in the draft tube which frequeiscgtefined between 0 Hz and 5 Hz. The amplitude
is set to 3 m corresponding to 1% of the gross leealdthe phase is set/p4. The resulting system
response is shown in Figure 3 at two pressure nodése penstock (Hc7 and Hcl4 respectively
corresponding to 32.5% and 70% of the length ofpmestock) and at one pressure node (Hc2 located
in the middle of the draft tube) in the draft tube.
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Figure 3. Forced response of the hydraulic system.

Figure 3 represents for each frequency of the mtumeexcitation source between 0 Hz and 5 Hz,
the amplitude of the system response. Resultsaagreement with the eigenvalues since resonances
are observed at the eigenfrequencies and amplitadesn accordance with the damping of the
eigenvalues. For the lowest damping, amplitudearesp will be the highest, see eigenmode H5 at
2.16 Hz. In Figure 4, the comparison of pressunetdiations in the piping system between forced
response analysis and time domain simulation isemaih an excitation source set to the first
eigenfrequency H1l of the system. To compare with fbrced response, spectra of pressure
fluctuations in the time domain simulation are parfed and both amplitude and phase at the
frequency H1 are depicted and compared. A very goatthing is obtained between forced response
and time domain simulation.
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2.2.2. Electrical system

The second validation is performed for an elecltrisgstem featuring a synchronous machine
connected to a grid, see Figure 5. This electrithine is set to be connected to the hydrauliesys
presented above with a terminal voltage of 17’50\ excitation torque on the mechanical mass is
applied to simulate mechanical power fluctuationstlee shaft induced by a cavitation vortex rope
development in the turbine draft tube.

Figure 5. Forced response of
— @E an electrical system with
T torque excitation sourcaT,, .
Table 2 presents the eigenmodes of the electricdés computed from the linearized state global

matrix defined by| A]"[B]. The eigenmode E1 represents the oscillationsi@fachine against

the power grid and is called “local mode”. The set@®igenmode E2 corresponds to the system
frequency since stator currents state variableh@fmachine are expressed in a rotating reference
frame attached to the rotor.

Table 2. Eigenvalues of the electrical
system.
Name s=a+jw f (Hz)

El -3.70+j11.30 1.80
E2 —-3.48+ j 313.9¢ 49.97

Forced response of this electrical system is perorwith a torque excitation source which frequency
is defined between 0 Hz and 5 Hz. The amplitudseisto 50°000 Nm corresponding tol % of the

nominal torque and the phase is sergi@l . The resulting system response is shown in Fi§uae the
stator currents (ia, ib, ic) and the excitatiorrent of the rotor (if).
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Figure 6 represents for each frequency of the wrxcitation source between 0 Hz and 5 Hz, the
amplitude of the system response. The local modeeobynchronous machine is found at 1.8 Hz in
accordance with the eigenfrequencies of Table rixeSihe system matrices for electrical systems are



expressed in a rotating frame attached to the rtherfrequency response must be interpreted & thi
rotating frame whereas time domain simulation isairfixed frame. Hence, for validation and
comparison, time domain simulation results must égressed in the rotating frame. This
transformation is made in three steps [16]. Th&t fine is to define from the three phase currebts a

c, a spatial phasor® in a fixed frame (superscript with coordinate{sij;i;} ;

[EEN

i; :_(Z-a _ib _ic)
PP ) ©

i; :ﬁ(ib _iC)

Then, considering a coordinates systé&nshifted with an anglé), from coordinates systers)(and

w

moving with angular frequencyy, corresponding to the rotor frequency of the maghthe spatial
phasor in the new coordinates systéjrig expressed as:
i, =i, cosg +i; sing,

k
g, =
e = 0 {izzi;cosek—ijsirﬂk

(10)

Finally, from this spatial phasor in the rotatingocdinates system (K), instantaneous three phase
currents a-b-c can be reconstituted:

X =ik

|§:—%i§+§i; (1)
-k_ 1-k Jé-k

Ic ___Ia __2|/3

In Figure 7a the amplitude spectrum of the statwremt on phase a is plotted. A modulation of the
50 Hz network frequency at 1.8 Hz (El) is observeth peak amplitudes ab0 Hz+ 1.8 Hz.
Transformation in the rotating frame yields the &tage spectrum given in Figure 7b corresponding
to harmonic oscillations at the local mode freqyeh@ Hz (E1). Both amplitude and phase at the
frequency E1 of the transformed current are deghieted compared to the forced response. A very
good matching is obtained between forced respomdéime domain simulation in rotating frame.
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Figure 7e. Amplitude spectrum of stator current Figure 7b. Amplitude spectrum of stator
on phase a in the fixed frame (s) obtained bycurrent on phase a in the rotating frame (k)
time domain simulation. obtained by time domain simulation.

3. Case study

The case study is a complete hydroelectric powentplvith controllers such as speed regulator and
generator excitation system with ABB Unitrol voleagegulator including power system stabilizer of
type IEEE PSS2B, see Figure 8. Both hydro-mechhaiva electro-mechanical parts with their own
controllers will be analyzed separately with thecéal response technique. Then, the analysis of the
complete system will be performed. Hydraulic andctical systems studied for validation of the
forced response in subsection 2.2 are constittiiisgcase study.

4. Forced Response Analysis

4.1. Hydro-mechanical part

The hydro-mechanical part includes the Francisiterlthe hydraulic layout, the speed governor and
the two coupled rotating inertias. Eigenvalueshid system are computed and summarized in Table 3.
By comparing with Table 1, two additional eigenm®dare found: one related to the hydraulic
regulation (HR1) and the other one is the torsianatle between the two rotating inertias which
frequency and damping depend on the parameterbeofniechanical system with coupling (M1).
Moreover, it can be noticed that taking into acddasth regulation and rotating inertias, increabes
frequency of the two first hydraulic eigenmodes {2jespectively by 67% and 13%.
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Figure 8. Hydroelectric case study for forced response aiswlygth
momentum excitation soura@H in the turbine draft tube.

Table 3. Eigenvalues of the hydro-
mechanical part.

Name s=a+jw f (H2)

HRL -0.48+j0.94  0.15

H1  -1.13+j3.92  0.62
H2  -1.64+j6.12  0.97
H3  -093+j858  1.36
H...

H23 -0.09+ j 48.37 7.70
M1 -2.87+j107.0t  17.04

Forced response is performed with the momentuntaian source in the draft tube which frequency
is defined between 0 Hz and 5 Hz. The amplitudgetso 3m corresponding to 1% of the gross head

and the phase is set /4. The resulting system response is shown in Fi§uaktwo pressure nodes

in the penstock (Hc7 and Hcl4) and at one pressute (Hc2) in the draft tube. The eigenfrequency
of the speed regulator (HR1) at 0.15 Hz is founthwhie forced response and modifications of the two
first hydraulic eigenfrequencies (H1-2) as well.
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Figure 9. Forced response of the hydro-mechanical part

4.2. Electro-mechanical part

The electro-mechanical part includes the transonisdine, the transformer and the synchronous
machine with the two rotating inertias and the agd#t regulator with power system stabilizer.
Eigenvalues of this system are computed and surnethin Table 4 and influence of PSS is assessed.
Only eigenvalues of interest are mentioned in T&bl&ll remaining eigenvalues are either real or
have a strong damping and consequently don't sogmfly affect the dynamical behavior of the
system. The torsional mechanical mode (M1) is fowitd a damping much lower than the one found
with the hydro-mechanical part. This additional gémg is due to the linearization of the hydraulic
torque turbine characteristics. Moreover, two rated electrical eigenmodes (ER1-2) are found: one
related to the voltage regulator (ER2) with highmging and one related to the power system
stabilizer (ER1). Regarding the local mode (Elndig is higher with the PSS and eigenfrequency
is increased by 27%.

Table 4.Eigenvalues of the electro-mechanical part.
With PSS Without PSS
Name s=a+jw f (Hz) s=a+jw f (Hz)

ERL | -0.28+] 2.46 0.39
ER2 | -18.09+]3.65 0058 | -19.85+j6.70 1.07
El | -2.22+j10.28 164 | -0.80+j8.09  1.29
M1 | -0.05+)102.4¢ 16.3 | -0.05+j102.4¢ 16.3

Forced response of this electro-mechanical paperformed with a torque excitation source which
frequency is defined between 0 Hz and 5 Hz. Thelitudp is set to 50'000 Nm corresponding to 1%
of the nominal torque and the phase is setitd. The system responses with and without PSS are
shown respectively in Figure 10a and 10b. The |Igyerdrequency of the PSS (ER1) and the local
mode (E1) are found with the forced response. émibe of the PSS on the damping and the frequency
of the local mode (E1) is shown and is in accordamith the eigenvalues results.
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Figure 10a. Forced response of the electro- Figure 10b. Forced response of the electro-
mechanical part with PSS. mechanical part without PSS.

4.3. Hydroelectric system

Eigenvalues of the hydroelectric system are contpatedl summarized in Table 5. The local mode
(E1) is modified by the PSS as mentioned previobgiyhe analysis of the electro-mechanical part.
Frequencies and dampings of the first hydraulicragdlated eigenmodes are slightly modified by the
PSS. Finally, the torsional mode (M1) features dam@and frequency which was obtained with the
hydro-mechanical part, see Table 3. It can be atted that the hydraulic eigenvalues H1 and H2
obtained with the hydroelectric system without R$& close to those obtained for the first hydraulic
model with constant rotational speed, see Tabl®idreover, the frequency of the first hydraulic

eigenmode H1 is affected by the presence of the PSS

Table 5. Eigenvalues of the hydroelectric system.

With PSS Without PSS

Name s=a+ |w f (Hz) s=a+|w f (Hz)
HRL -1.21+j0.91 0.15 -1.76+j051 0.08
ERL - 0.19+j2.27 0.36

ER2 -17.81+)3.43 055 -19.83+)6.69 1.06
H1 -196+)3.76 060 -1.28+j2.49 040
H?2 -132+j522 083 -0.73+j540 0.86
H3 -0.72+j831 132 -1.14+)9.49 151
El - 177+j10.79 171 -035+j7.95 1.26

H23 -0.09+)48.37 7.70 -0.09+)48.37 7.70
M1 - 2.87+)107.00 17.04 -2.87+)107.00 17.04




The forced response of the synchronous machine vdbectrical or hydroelectric systems are
considered are compared in Figure 11. The shapeeafpectrum derived with the electrical system is
reproduced with the hydroelectric system. Indeetpldications at the local mode E1 and at the PSS
eigenmode ER1 are found. Around this mean shapgeremonances and hydraulic resonances are
visible. Amplitudes of the different hydraulic eigaodes are modulated by the spectrum of the
electrical system.
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Figure 11a. Comparison of the forced response Figure 11b. Comparison of the forced response
of the synchronous machinebtained with of the synchronous machinebtained with
electrical and hydroelectric systems including electrical and hydroelectric systems without
PSS. PSS.

It is known that the cavitation vortex rope in ti@ft tube induces pressure fluctuations betwe2n 0.
and 0.4 times the rotational frequency of the nghiunner corresponding respectively to 1.25 Hz and
2.5 Hz. Hence resonance between the system anebttex rope is possible at the third hydraulic
eigenmode frequency H3. Assuming a match of thesguéncies, response of the synchronous
machine is given in Table 6 and the influence ef BES is shown. The PSS has a stabilizing effect by
reducing the stator currents fluctuations since lauge of the local mode E1 is reduced by the PSS
and the third hydraulic eigenfrequency is closeowelver, if resonance would occur with a hydraulic
eigenmode which frequency is close to the PSS migde ER1, the PSS would have a destabilizing
effect by amplifying the response.

Table €. Frequency response of the synchronous
machine to the momentum excitation in the drafetab
frequency of the third hydraulic eigenmode H3.

With PSS Without PSS
Variable A (A) ¢ (rad) A(A) ¢ (rad)
ia 88.704 1.97 134.645 1.38
ib 104.318 0.40 354.321 -1.84
ic 136.806 -2.03 220.311 1.26
if 16.934 1.92 17.707 -2.39
id 11.559 -0.03 8.497 -0.90
iq 3.274 1.05 12.850 -1.02

Despite of the stabilizing effect on the electripalt of the system, the damping of the third hytica
eigenmode H3 is the lowest, see Table 5. Figureshti®vs the response of the hydraulic part of the
system and compares the amplitudes of pressurdiiens in the piping system if PSS is considered



or not. A good agreement is found with time domgimulation results. It can be seen that pressure
fluctuations are higher if PSS is used. Howeves, lfehavior is specific to this eigenmode since the
two first hydraulic eigenmodes feature a higher piagn with the PSS, see Table 5.
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Figure 12a. Forced response in the piping Figure 12b. Forced response in the piping
system induced by excitation source set to thesystem induced by excitation source set to the
third hydraulic eigenmode frequency H3 third hydraulic eigenmode frequency H3
(Hydroelectric system with PSS). (Hydroelectric system without PSS).

5. Conclusion

A forced response analysis tool of hydroelectrstems has been developed in SIMSEN. This method
allows identifying the contribution of each eigerdranto the system response which depends on the
system boundary conditions and the excitation slwocation.Combining forced response analysis
with eigenmodes computation, SIMSEN is a powerfdl tfor stability analysis of hydroelectric
systems including hydraulic system, rotating tralectrical system and control devices. In thisgoap
system response to hydraulic excitation induceddwtation vortex rope in the turbine draft tube ha
been investigated.The study could be extended to ather excitation source which could be
mechanical or electrical. This tool has been vaédidavith time domain simulations from simplest test
case to complex hydroelectric system including mnstructures. It is shown that this tool is
complementary to modal analysis for stability assemnt.

Moreover, the different test cases investigatedhia paper have demonstrated that the hydraulic
eigenmodes can be significantly affected by theraipey conditions of the turbine (rotational speed
constant or not), and by the control devices, idicig hot only the turbine speed governor but a&o t

generator voltage regulator and the power systabiliger. It means for examples that the hydraulic
system is expected to feature different hydraulgemmodes during the synchronisation phase,
interconnected operation or isolated operation.il&imesults have been found for the generatorlloca

mode which is affected not only by the voltage tatpr and the power system stabilizer, but also by
the hydraulic system.
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