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Abstract. At off-design operating points, Francis turbines develop cavitation vortex rope in the 
draft tube which may interact with the hydraulic system. Risk resonance assessment by means 
of eigenmodes computation of the system is usually performed. However, the system response 
to the excitation source induced by the cavitation vortex rope is not predicted in terms of 
amplitudes and phase. Only eigenmodes shapes with related frequencies and dampings can be 
predicted. Besides this modal analysis, the risk resonance assessment can be completed by a 
forced response analysis. This method allows identifying the contribution of each eigenmode 
into the system response which depends on the system boundary conditions and the excitation 
source location. In this paper, a forced response analysis of a Francis turbine hydroelectric 
power plant including hydraulic system, rotating train, electrical system and control devices is 
performed. First, the general methodology of the forced response analysis is presented and 
validated with time domain simulations. Then, analysis of electrical, hydraulic and 
hydroelectric systems are performed and compared to analyse the influence of control 
structures on pressure fluctuations induced by cavitation vortex rope. 

1. Introduction

In the recent years due to tremendous development and integration of renewable energy resources 
(NRE), water turbines and pump-turbines are key technical components to achieve both primary and 
secondary power grid control. The fast change of power generation by NRE is impacting the required 
operating range of hydro units going from overload down to part load. At this off-design operating 
points, hydraulic machines experience flow instabilities being excitation source for the complete 
hydroelectric system. For instance, Francis turbines develop cavitation vortex rope in the draft tube 
which may interact with the hydroelectric system and resonance or instability phenomena can be 
experienced. Usually, modal analysis of the system is performed to identify the eigenmodes of the 
system. This can be completed by a forced response analysis yielding the contribution of each 
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eigenmode into the system response depending on the system boundary conditions and the excitation 
source location. 

Stability analysis of hydroelectric systems including hydraulic system, rotating train, electrical system 
and control devices based on eigenmodes computation is usually performed [1]. However, the forced 
response in the frequency domain was limited to the analysis of hydraulic systems [2-7], electrical 
systems [8] or hydroelectric systems with simplified transfer function of the hydraulic part [9,10]. This 
paper goes further and presents the application of this method to hydroelectric systems including 
detailed hydraulic models, even if similar study was performed with time domain simulations [11,12]. 

In the first section, the general methodology of the forced response analysis is presented and validated 
with time domain simulations. Then, analysis of electrical, hydraulic and hydroelectric systems are 
performed and compared to analyse the influence of control structures on pressure fluctuations 
induced by cavitation vortex rope developed in the turbine draft tube. 

2. Forced Response Technique 

2.1. Transfer Matrix 

For SIMSEN, system dynamics is described according to the following set of first order differential 
equations: 

 [ ] [ ] [ ] ( ),
dX
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 (1) 

With: 

- X
�

 the state vector with n  components; 

- U
�

 the input vector with p  components; 

- [ ]A  and [ ]B  the nonlinear state global matrices of dimensions [ ]n n× ; 

- [ ]C  the input matrix of dimension [ ]n p× ; 

- ( ),V X U
� � �

 the boundary conditions vector with n  components. 

System’s outputs Y
�

 are formulated through the following set of equations: 
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 (2) 

With: 

- Y
�

 the output vector with q  components; 

- [ ]D  the output matrix of dimensions [ ]q n× ; 

- [ ]E  the feedthrough matrix of dimensions [ ]q p× . 

Frequency response technique is based on linearized set of equations [13]. Indeed, sinusoidal input to 
a linear system generates sinusoidal response at the same frequency. Hence, the set of equations is first 

linearized around the solution { }0 0,X U
� �

 by considering small perturbations: 
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The resulting linearized set of equations is written as follows: 
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The input vector Uδ
�

contains both set points of regulators regUδ
�

and excitation sources sourcesUδ
�

: 
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Applying the Laplace transformation to the set of differential equations, it yields: 
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Using equation (2), the relation between the system’s output and the input is made: 
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With ( )M s    the matrix transfer functions of dimension [ ]n l×  which relates the system output Yδ
�

 

to the input vectorUδ
�

. Considering a system with 2 input excitation sources, the third system’s output 

3Yδ  can be represented through the block diagram given in Figure 1a. The frequency response of a 

system whose matrix transfer function is ( )M s    is given by: 

 ( ) ( )
s j

M j M s
ω

ω
→

=        (8) 

Since input excitation, forced response and the system itself are sinusoids, an alternate way is to use 
phasors, see Figure 1b. 

 

 

 

Figure 1a. Block diagram of the frequency 
response. 

 Figure 1b. Block diagram expressed with 
phasors for sinusoids inputs. 

2.2. Validation of the forced response 

A forced response analysis tool has been integrated to the SIMSEN software based on the above 
mentioned methodology. This tool uses the system matrices provided by SIMSEN and the user 



 

 

 

 

 

 
specifies excitation sources into the system in a frequency range to analyze the response in the 
frequency domain. Since time integration of differential equations is not performed, the forced 
response technique is less time consuming than performing time domain simulations including 
excitation sources. This new tool is validated by comparing time domain simulation with frequency 
response. 

2.2.1. Hydraulic system 

The first validation is performed for a hydraulic system featuring a Francis turbine generating unit at 
constant speed (dynamics of rotating inertia are neglected) connected to a penstock of 1’100 m length 
(named “Pipe1”), see Figure 2. The draft tube (named “Pipe2”) of the turbine is modeled with a 
downstream pipe of 36m length in which momentum excitation source is applied to represent pressure 
fluctuations induced by a cavitation vortex rope. Standard pipe model of constant cross section with a 
wave speed of 300m/s is used for the draft tube part. However advanced models of draft tube could be 
used for this study taking into account divergent geometry and convective terms [14]. With a gross 
head of 315m, the turbine nominal power is 200MW with a rotational speed of 375 rpm. 

 

Figure 2. Forced response of 
a hydraulic system with 
momentum excitation source 

Hδ  in the turbine draft tube. 

Eigenmodes of this system are given by the eigenvalues and the eigenvectors of the linearized state 

global matrix defined by [ ] [ ]1

l lA B
−

. Francis turbine is modeled as a quasi-steady head ( ), ,tH Q yω  

defined from turbine characteristics work which is nonlinear function of the flow rate, the rotational 
speed and the guide vane opening. Linearization of this function is performed to obtain the linearized 
state global matrix [15]. Damping and oscillation frequency of the eigenmodes are given respectively 
by the real part and the imaginary part of the complex eigenvalues s jα ω= +  given in Table 1. The 
method also provides purely real eigenvalues corresponding to system time constants, which are not 
reported in this paper. With a spatial discretization of 20 pressure nodes in the penstock and 3 pressure 
nodes in the draft tube, 23 hydraulic eigenmodes, named Hi, are found from 0.37 Hz to 7.7 Hz. 

Table 1. Eigenvalues of the hydraulic 
system. 
Name s jα ω= +  f ( Hz) 

1

2

3

4

5

6

...

23

H

H

H

H

H

H

H

H

 

1.61 2.35

1.13 5.42

0.75 8.48

0.26 11.35

0.06 13.59

0.57 16.19

...

0.10 48.36

j

j

j

j

j

j

j

− +
− +
− +
− +
− +
− +

− +

 

0.37

0.86

1.35

1.81

2.16

2.58

...

7.70

 



 

 

 

 

 

 
Combined with the computation of the eigenmodes, forced response is performed with the momentum 
excitation source in the draft tube which frequency is defined between 0  Hz and 5  Hz. The amplitude 
is set to 3 m corresponding to 1% of the gross head and the phase is set to4π . The resulting system 
response is shown in Figure 3 at two pressure nodes in the penstock (Hc7 and Hc14 respectively 
corresponding to 32.5% and 70% of the length of the penstock) and at one pressure node (Hc2 located 
in the middle of the draft tube) in the draft tube. 

 
Figure 3. Forced response of the hydraulic system. 

 

Figure 3 represents for each frequency of the momentum excitation source between 0  Hz and 5  Hz, 
the amplitude of the system response. Results are in agreement with the eigenvalues since resonances 
are observed at the eigenfrequencies and amplitudes are in accordance with the damping of the 
eigenvalues. For the lowest damping, amplitude response will be the highest, see eigenmode H5 at 
2.16 Hz. In Figure 4, the comparison of pressure fluctuations in the piping system between forced 
response analysis and time domain simulation is made with an excitation source set to the first 
eigenfrequency H1 of the system. To compare with the forced response, spectra of pressure 
fluctuations in the time domain simulation are performed and both amplitude and phase at the 
frequency H1 are depicted and compared. A very good matching is obtained between forced response 
and time domain simulation. 

 

 

Figure 4. Comparison of pressure 
fluctuations in the piping system 
between forced response and time 
domain simulation with excitation 
source at the first eigenfrequency H1.  



 

 

 

 

 

 
2.2.2. Electrical system 

The second validation is performed for an electrical system featuring a synchronous machine 
connected to a grid, see Figure 5. This electrical machine is set to be connected to the hydraulic system 
presented above with a terminal voltage of 17’500 V. An excitation torque on the mechanical mass is 
applied to simulate mechanical power fluctuations on the shaft induced by a cavitation vortex rope 
development in the turbine draft tube. 

 

Figure 5. Forced response of 
an electrical system with 
torque excitation source extTδ . 

Table 2 presents the eigenmodes of the electrical system computed from the linearized state global 

matrix defined by [ ] [ ]1

l lA B
−

. The eigenmode E1 represents the oscillations of the machine against 

the power grid and is called “local mode”. The second eigenmode E2 corresponds to the system 
frequency since stator currents state variables of the machine are expressed in a rotating reference 
frame attached to the rotor. 

Table 2. Eigenvalues of the electrical 
system. 
Name s jα ω= +  f ( Hz) 

1

2

E

E
 

3.70 11.30

3.48 313.99

j

j

− +
− +

 
1.80

49.97
 

Forced response of this electrical system is performed with a torque excitation source which frequency 
is defined between 0 Hz and 5 Hz. The amplitude is set to 50’000 Nm corresponding to1 % of the 
nominal torque and the phase is set to 4π . The resulting system response is shown in Figure 6 for the 
stator currents (ia, ib, ic) and the excitation current of the rotor (if). 

 
Figure 6. Forced response of 
the electrical system. 

Figure 6 represents for each frequency of the torque excitation source between 0 Hz and 5 Hz, the 
amplitude of the system response. The local mode of the synchronous machine is found at 1.8 Hz in 
accordance with the eigenfrequencies of Table 2. Since the system matrices for electrical systems are 



 

 

 

 

 

 
expressed in a rotating frame attached to the rotor, the frequency response must be interpreted in this 
rotating frame whereas time domain simulation is in a fixed frame. Hence, for validation and 
comparison, time domain simulation results must be expressed in the rotating frame. This 
transformation is made in three steps [16]. The first one is to define from the three phase currents a-b-

c, a spatial phasor si  in a fixed frame (superscript s) with coordinates{ };s si iα β : 
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Then, considering a coordinates system (k) shifted with an angle kθ  from coordinates system (s) and 

moving with angular frequency 0ω  corresponding to the rotor frequency of the machine, the spatial 

phasor in the new coordinates system (k) is expressed as: 
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Finally, from this spatial phasor in the rotating coordinates system (k), instantaneous three phase 
currents a-b-c can be reconstituted: 
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In Figure 7a the amplitude spectrum of the stator current on phase a is plotted. A modulation of the 
50 Hz network frequency at 1.8 Hz (E1) is observed with peak amplitudes at 50 Hz 1.8 Hz± . 
Transformation in the rotating frame yields the amplitude spectrum given in Figure 7b corresponding 
to harmonic oscillations at the local mode frequency 1.8 Hz (E1). Both amplitude and phase at the 
frequency E1 of the transformed current are depicted and compared to the forced response. A very 
good matching is obtained between forced response and time domain simulation in rotating frame. 



 

 

 

 

 

 

 

 

 
Figure 7a. Amplitude spectrum of stator current 
on phase a in the fixed frame (s) obtained by 
time domain simulation. 

 Figure 7b. Amplitude spectrum of stator 
current on phase a in the rotating frame (k) 
obtained by time domain simulation. 

   

3. Case study 

The case study is a complete hydroelectric power plant with controllers such as speed regulator and 
generator excitation system with ABB Unitrol voltage regulator including power system stabilizer of 
type IEEE PSS2B, see Figure 8. Both hydro-mechanical and electro-mechanical parts with their own 
controllers will be analyzed separately with the forced response technique. Then, the analysis of the 
complete system will be performed. Hydraulic and electrical systems studied for validation of the 
forced response in subsection 2.2 are constituting this case study. 

4. Forced Response Analysis 

4.1. Hydro-mechanical part  

The hydro-mechanical part includes the Francis turbine, the hydraulic layout, the speed governor and 
the two coupled rotating inertias. Eigenvalues of this system are computed and summarized in Table 3. 
By comparing with Table 1, two additional eigenmodes are found: one related to the hydraulic 
regulation (HR1) and the other one is the torsional mode between the two rotating inertias which 
frequency and damping depend on the parameters of the mechanical system with coupling (M1). 
Moreover, it can be noticed that taking into account both regulation and rotating inertias, increases the 
frequency of the two first hydraulic eigenmodes (H1-2) respectively by 67% and 13%. 



 

 

 

 

 

 

 

Figure 8. Hydroelectric case study for forced response analysis with 
momentum excitation source Hδ  in the turbine draft tube.  

 

Table 3. Eigenvalues of the hydro-
mechanical part. 

Name s jα ω= +  f (Hz) 

1

1

2

3

...

23

1

HR

H

H

H

H

H

M

 

0.48 0.94

1.13 3.92

1.64 6.12

0.93 8.58

...

0.09 48.37

2.87 107.06

j

j

j

j

j

j

− +
− +
− +
− +

− +
− +

 

0.15

0.62

0.97

1.36

...

7.70

17.04

 

Forced response is performed with the momentum excitation source in the draft tube which frequency 
is defined between 0 Hz and 5 Hz. The amplitude is set to 3m corresponding to 1% of the gross head 
and the phase is set to 4π . The resulting system response is shown in Figure 9 at two pressure nodes 
in the penstock (Hc7 and Hc14) and at one pressure node (Hc2) in the draft tube. The eigenfrequency 
of the speed regulator (HR1) at 0.15 Hz is found with the forced response and modifications of the two 
first hydraulic eigenfrequencies (H1-2) as well. 



 

 

 

 

 

 

 
Figure 9. Forced response of the hydro-mechanical part 

4.2. Electro-mechanical part 

The electro-mechanical part includes the transmission line, the transformer and the synchronous 
machine with the two rotating inertias and the voltage regulator with power system stabilizer. 
Eigenvalues of this system are computed and summarized in Table 4 and influence of PSS is assessed. 
Only eigenvalues of interest are mentioned in Table 4. All remaining eigenvalues are either real or 
have a strong damping and consequently don’t significantly affect the dynamical behavior of the 
system. The torsional mechanical mode (M1) is found with a damping much lower than the one found 
with the hydro-mechanical part. This additional damping is due to the linearization of the hydraulic 
torque turbine characteristics. Moreover, two regulated electrical eigenmodes (ER1-2) are found: one 
related to the voltage regulator (ER2) with high damping and one related to the power system 
stabilizer (ER1). Regarding the local mode (E1), damping is higher with the PSS and eigenfrequency 
is increased by 27%. 

Table 4. Eigenvalues of the electro-mechanical part. 
 With PSS Without PSS 

Name s jα ω= +  f (Hz) s jα ω= +  f (Hz) 

1

2

1

1

ER

ER

E

M

 

0.28 2.46

18.09 3.65

2.22 10.28

0.05 102.49

j

j

j

j

− +
− +
− +
− +

 

0.39

0.58

1.64

16.3

 
19.85 6.70

0.80 8.09

0.05 102.49

j

j

j

− +
− +
− +

 
1.07

1.29

16.3

 

Forced response of this electro-mechanical part is performed with a torque excitation source which 
frequency is defined between 0 Hz and 5 Hz. The amplitude is set to 50’000 Nm corresponding to 1% 
of the nominal torque and the phase is set to 4π . The system responses with and without PSS are 
shown respectively in Figure 10a and 10b. The low eigenfrequency of the PSS (ER1) and the local 
mode (E1) are found with the forced response. Influence of the PSS on the damping and the frequency 
of the local mode (E1) is shown and is in accordance with the eigenvalues results. 



 

 

 

 

 

 

 

 

 
Figure 10a. Forced response of the electro-
mechanical part with PSS. 

 Figure 10b. Forced response of the electro-
mechanical part without PSS. 

4.3. Hydroelectric system 

Eigenvalues of the hydroelectric system are computed and summarized in Table 5. The local mode 
(E1) is modified by the PSS as mentioned previously by the analysis of the electro-mechanical part. 
Frequencies and dampings of the first hydraulic and regulated eigenmodes are slightly modified by the 
PSS. Finally, the torsional mode (M1) features damping and frequency which was obtained with the 
hydro-mechanical part, see Table 3. It can be also noted that the hydraulic eigenvalues H1 and H2 
obtained with the hydroelectric system without PSS are close to those obtained for the first hydraulic 
model with constant rotational speed, see Table 1. Moreover, the frequency of the first hydraulic 
eigenmode H1 is affected by the presence of the PSS. 

 

Table 5. Eigenvalues of the hydroelectric system. 
 With PSS Without PSS 

Name s jα ω= +  f (Hz) s jα ω= +  f (Hz) 

1

1

2

1

2

3

1

23

1

HR

ER

ER

H

H

H

E

H

M

 

1.21 0.91

0.19 2.27

17.81 3.43

1.96 3.76

1.32 5.22

0.72 8.31

1.77 10.79

0.09 48.37

2.87 107.07
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j

j
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j
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− +

− +
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0.15

0.36

0.55

0.60

0.83

1.32

1.71

7.70

17.04

 

1.76 0.51

19.83 6.69

1.28 2.49

0.73 5.40

1.14 9.49

0.35 7.95

0.09 48.37

2.87 107.07

j

j

j

j

j

j

j

j

− +

− +
− +
− +
− +
− +
− +
− +

 

0.08

1.06

0.40

0.86

1.51

1.26

7.70

17.04

 

 



 

 

 

 

 

 
The forced response of the synchronous machine when electrical or hydroelectric systems are 
considered are compared in Figure 11. The shape of the spectrum derived with the electrical system is 
reproduced with the hydroelectric system. Indeed, amplifications at the local mode E1 and at the PSS 
eigenmode ER1 are found. Around this mean shape, anti-resonances and hydraulic resonances are 
visible. Amplitudes of the different hydraulic eigenmodes are modulated by the spectrum of the 
electrical system. 

 

 

 
Figure 11a. Comparison of the forced response 
of the synchronous machine obtained with 
electrical and hydroelectric systems including 
PSS. 

 Figure 11b. Comparison of the forced response 
of the synchronous machine obtained with 
electrical and hydroelectric systems without 
PSS. 

It is known that the cavitation vortex rope in the draft tube induces pressure fluctuations between 0.2 
and 0.4 times the rotational frequency of the turbine runner corresponding respectively to 1.25 Hz and 
2.5 Hz. Hence resonance between the system and the vortex rope is possible at the third hydraulic 
eigenmode frequency H3. Assuming a match of these frequencies, response of the synchronous 
machine is given in Table 6 and the influence of the PSS is shown. The PSS has a stabilizing effect by 
reducing the stator currents fluctuations since amplitude of the local mode E1 is reduced by the PSS 
and the third hydraulic eigenfrequency is closed. However, if resonance would occur with a hydraulic 
eigenmode which frequency is close to the PSS eigenmode ER1, the PSS would have a destabilizing 
effect by amplifying the response. 

Table 6. Frequency response of the synchronous 
machine to the momentum excitation in the draft tube at 
frequency of the third hydraulic eigenmode H3. 

 With PSS Without PSS 
Variable A (A) ϕ (rad) A (A) ϕ (rad) 

ia 88.704 1.97 134.645 1.38 
ib 104.318 0.40 354.321 -1.84 
ic 136.806 -2.03 220.311 1.26 
if 16.934 1.92 17.707 -2.39 
id 11.559 -0.03 8.497 -0.90 
iq 3.274 1.05 12.850 -1.02 

Despite of the stabilizing effect on the electrical part of the system, the damping of the third hydraulic 
eigenmode H3 is the lowest, see Table 5. Figure 12 shows the response of the hydraulic part of the 
system and compares the amplitudes of pressure fluctuations in the piping system if PSS is considered 



 

 

 

 

 

 
or not. A good agreement is found with time domain simulation results. It can be seen that pressure 
fluctuations are higher if PSS is used. However, this behavior is specific to this eigenmode since the 
two first hydraulic eigenmodes feature a higher damping with the PSS, see Table 5. 

 

 

 
Figure 12a. Forced response in the piping 
system induced by excitation source set to the 
third hydraulic eigenmode frequency H3 
(Hydroelectric system with PSS). 

 Figure 12b. Forced response in the piping 
system induced by excitation source set to the 
third hydraulic eigenmode frequency H3 
(Hydroelectric system without PSS). 

5. Conclusion 

A forced response analysis tool of hydroelectric systems has been developed in SIMSEN. This method 
allows identifying the contribution of each eigenmode into the system response which depends on the 
system boundary conditions and the excitation source location. Combining forced response analysis 
with eigenmodes computation, SIMSEN is a powerful tool for stability analysis of hydroelectric 
systems including hydraulic system, rotating train, electrical system and control devices. In this paper, 
system response to hydraulic excitation induced by cavitation vortex rope in the turbine draft tube has 
been investigated.The study could be extended to any other excitation source which could be 
mechanical or electrical. This tool has been validated with time domain simulations from simplest test 
case to complex hydroelectric system including control structures. It is shown that this tool is 
complementary to modal analysis for stability assessment. 

Moreover, the different test cases investigated in this paper have demonstrated that the hydraulic 
eigenmodes can be significantly affected by the operating conditions of the turbine (rotational speed 
constant or not), and by the control devices, including not only the turbine speed governor but also the 
generator voltage regulator and the power system stabilizer. It means for examples that the hydraulic 
system is expected to feature different hydraulic eigenmodes during the synchronisation phase, 
interconnected operation or isolated operation. Similar results have been found for the generator local 
mode which is affected not only by the voltage regulator and the power system stabilizer, but also by 
the hydraulic system. 
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