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ABSTRACT 

Hydroelectric power plants are known for their ability to cover variations of the consumption in 
electrical power networks. In order to follow this changing demand, hydraulic machines are subject 
to off-design operation. In that case, the swirling flow leaving the runner of a Francis turbine may 
act under given conditions as an excitation source for the whole hydraulic system. In high load 
operating conditions, vortex rope behaves as an internal energy source which leads to the self 
excitation of the system. 

The aim of this paper is to identify the influence of the full load excitation source location with 
respect to the eigenmodes shapes on the system stability. For this, a new eigenanalysis tool, based 
on eigenvalues and eigenvectors computation of the nonlinear set of differential equations in 
SIMSEN, has been developed. First the modal analysis method and linearization of the set of the 
nonlinear differential equations are fully described. Then, nonlinear hydro-acoustic models of 
hydraulic components based on electrical equivalent schemes are presented and linearized. Finally, 
a hydro-acoustic SIMSEN model of a simple hydraulic power plant, is used to apply the modal 
analysis and to show the influence of the turbine location on system stability. Through this case 
study, it brings out that modeling of the pipe viscoelastic damping is decisive to find out stability 
limits and unstable eigenfrequencies. 
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 INTRODUCTION 

At full load operating conditions, Francis turbines feature an axisymmetric cavitation vortex rope 
in the draft tube cone generated by the incoming swirling flow, see Jacob [1]. The rope may under 
certain conditions act as an energy source, which leads to self-excited pressure oscillations in the 
whole hydraulic system [1], [2]. These pressure oscillations can jeopardize the safety of mechanical 
and hydraulic systems on the prototype, see Jacob 1992 [3].  

Koutnik and Pulpitel [4] applied to Francis turbines the modeling approach developed initially 
for pump stability analysis based on the use of the cavitation compliance C and of the mass flow 
gain factor χ  parameters, see Brennen and Acosta in 1973 [5] and 1976 [6]. Using the transfer 
matrix method, Koutnik and Pulpitel [4] derived a stability diagram to explain a full load surge 
occurring on a four 39MW Francis Turbine power plant. A similar approach based on cavitation 
parameters mapping was also successfully applied to explain inducer instabilities by Tsujimoto et 
al. in 1993 [7] and propeller instabilities by Duttweiler and Brennen in 2002 [8] and by Watanabe 
and Brennen in 2003 [9]. In 2006, Koutnik et al.[10], used both transfer matrix method and time 
domain simulation with SIMSEN software to analyze and quantify a self excited phenomena 
occurring in a four 400MW Francis Pumped-Storage plant. Finally, in 2007 Chen et al. [11] 
performed a one dimensional stability analysis of a simple hydraulic power plant and showed the 
destabilizing effect of the diffuser and the swirling flow on the system stability. 

The aim of this paper is to identify the influence of the full load excitation source location with 
respect to the eigenmodes shapes on the system stability. For this purpose, a new eigenanalysis tool, 
based on eigenvalues and eigenvectors computation of the nonlinear set of differential equations has 
been developed and implemented in SIMSEN software. First the modal analysis method and 
linearization of the set of the nonlinear differential equations in SIMSEN are fully described. Then, 
nonlinear hydro-acoustic models of hydraulic components based on electrical equivalent schemes 
are presented and linearized. Finally, a hydro-acoustic SIMSEN model of a simplified hydraulic 
power plant, is used to apply the new modal analysis and to show the influence of the turbine 
location on system stability. 

 

MODAL ANALYSIS 

General state space equation 

Initially, SIMSEN software was developed by the EPFL for the transient and steady-state 
simulation of electrical power systems and control devices having an arbitrary topology. Then, the 
capability of the software was extended to hydraulic components in order to be able to simulate the 
transient behavior of a complete hydroelectric power plant. The most common hydraulic 
components have been implemented such as pump-turbine, penstock, surge tank, gallery, valve, 
reservoir, etc. In order to get a common set of differential equations for both electrical and hydraulic 
parts, hydraulic models are based on the electrical analogy [12]. Therefore, dynamic behavior of a 
hydroelectric system, is given by a set of n  first order nonlinear ordinary differential equations of 
the following form: 

[ ] ( ) ( )dXA B X X V X
dt

⎡ ⎤⋅ + ⋅ =⎣ ⎦                      
(1) 

where [ ]A  and ( )B X⎡ ⎤
⎣ ⎦  are the state global matrices of dimension [ ]n n× , X  and ( )V X  are 

respectively the state vector and the boundary conditions vector with n  components. This set of 
equations feature nonlinearity since the matrix ( )B X⎡ ⎤

⎣ ⎦  and the boundary conditions vector ( )V X  

are function of the state vector. 
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Linearization and stability assessment 

Stability analysis of a hydroelectric system subjected to small perturbations is based on 
linearization of the nonlinear set of differential equations (1) around an equilibrium point, see [13]. 
Then, stability is deduced from the eigenvalues of the linearized set of differential equations. 
Assuming ( ) ( )f B X X V X⎡ ⎤= ⋅ −⎣ ⎦  a vector of n  nonlinear functions, Equation (1) becomes: 

[ ] ( ) 0dXA f X
dt

⋅ + =
                        

(2) 

Considering a small perturbation from the equilibrium point 0X  defined by: 

0X X Xδ= +
                           

(3) 
this new state vector must satisfy Equation (1), and using a first order Taylor development it yields 
to the linearized matrix form: 

[ ] [ ] 0l
d XA B X

dt
δ δ⋅

⋅ + ⋅ =
                      

(4) 

with 
0

i
l ij

j

fB
X
∂

=
∂

 the linearized state global matrix. 

Hence, eigenvalues of the matrix [ ] [ ] [ ]1
lM A B−= −  define the sytem stability. They can be 

either real or complex numbers. A real eigenvalue is a non oscillatory eigenmode whereas a 
complex eigenvalue is an oscillatory one. In both cases damping and oscillation frequency of the 
eigenmode are respectively given by the real part and the imaginary part of the eigenvalue. 
Therefore, if at least one of the eigenvalue has a positive real part, the system is unstable. 
 

MODELING AND LINEARIZATION OF HYDRAULIC COMPONENTS 

The aim of this paper is to show the influence on the system stability, of the vortex rope location 
with respect to the eigenmodes shapes of the hydraulic system. Hence, the modal analysis is applied 
to a simple hydraulic power plant including viscoelastic pipes and a Francis turbine with a 
cavitation vortex rope. Nonlinear models of hydraulic elements involved in this case study are 
presented and linearized in this section. 

Viscoelastic pipe 

By assuming uniform pressure and velocity distributions in the cross section and neglecting the 
convective terms, the one-dimensional momentum and continuity balances for an elementary pipe 
filled with water of length dx , cross section A and wave speed a, yields to the well known Allievi 
hyperbolic equations, see [14], [15]. Using the Finite Difference Method with a 1st order centered 
scheme discretization in space and a scheme of Lax for the discharge variable, this approach leads 
to a set of ordinary differential equations (1) which can be represented as a T-shaped equivalent 
electrical scheme shown in Figure 1. The RLC parameters of this equivalent scheme are given by: 

2 2; ;
2

i
i

Q dx dx gAdxR L C
gDA gA a

λ
= = =                     (5) 

where λ  is the local loss coefficient. The hydraulic resistance R, the hydraulic inductance L, and 
the hydraulic capacitance C correspond respectively to energy losses, inertia and storage effects due 
to wall deflection and fluid compressibility. Moreover, in order to predict accurately pressure 
fluctuation amplitudes and system stability, it is necessary to take into account the viscoelastic 
behavior due to an energy dissipation during the wall deflection. This additional dissipation leads to 
a resistance in series with the capacitance as shown in Figure 1. 
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Figure 1 Electrical equivalent scheme of a pipe of length dx  with viscoelastic resistance  

This viscoelastic resistance is accounting for both fluid and pipe material viscoelasticity and 
can be expressed as: 

equ
veR

A g dx
μ
ρ

=
⋅ ⋅ ⋅                          

(6) 

with equμ  the equivalent viscoelastic damping of both the fluid and the wall. The resulting set of 
nonlinear differential equations relative to the equivalent electrical circuit is set up using Kirchoff 
laws and can be written under matrix form: 

1/ 2 1/ 2

1 1 1 1

0 0 0 1 1 0
0 / 2 0 1 / 2
0 0 / 2 1 / 2

i i

i i ve ve i i

i ve i ve i i

C h h
dL Q R R R Q h
dt

L Q R R R Q h

+ +

+ + + +

−⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⋅ ⋅ + + − ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥− − + −⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠     

(7) 

Resistance iR  , proportional to the discharge iQ , induces a nonlinearity proportional to the square 
exponent of the discharge. Applying the linearization, it yields to: 

( )' 2 '
0

2i i i i iR Q R Q Qδ δ⋅ = ⋅ ⋅ ⋅
                       

(8) 

where 0iQ  is the discharge at the equilibrium point and
 

'
iR  the reduced resistance defined by: 

'
22i

dxR
gDA
λ ⋅

=
                           

 (9) 

Hence, the linearized state global matrix for the viscoelastic pipe is: 

[ ] '
0viscoelastic pipe

'
1 1 0

0 1 1
1
1

l i i ve ve

ve i i ve

B R Q R R
R R Q R+ +

⎡ ⎤−
⎢ ⎥= ⋅ + −⎢ ⎥
⎢ ⎥− − ⋅ +⎣ ⎦              

(10) 

Francis turbine 

Francis turbine can be modeled as a pressure source converting hydraulic energy into 
mechanical work, an inductance related to the inertia effects of the water and a resistance which 
models the head losses through the turbine. The resulting nonlinear differential equation is: 

i
t t i t I I

dQL R Q H H H
dt

+ = − + −
                     

(11) 

Moreover, momentum equation applied to the rotational inertias is taken into account and leads to: 

t t elec
dJ T T
dt
ω

⋅ = −
                           

(12) 

where tJ  ,
 
ω  , tT  , elecT  are respectively turbine inertia, rotational speed, mechanical torque and 

electromagnetic torque. Combined with Equation (11) the set of differential equations under matrix 
form is: 

0 0
0 0 0

t t Ii t i I

t t elec

L H H HQ R Qd
J T Tdt ω ω

− + −⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎛ ⎞
⋅ ⋅ + ⋅ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ −⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠              

(13) 

The pressure source ( ), ,t iH Q yω  and the mechanical torque ( ), ,t iT Q yω are driven by the 
turbine characteristics which are nonlinear functions of the discharge, the rotational speed and the 
guide vane opening. In the same way as the viscoelastic pipe model, the resistance term of the 
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Francis Turbine model induces a nonlinearity proportional to the square exponent of the discharge. 
Therefore the linearization of this term is identical. On the other part, the linearization of the 
pressure source and the mechanical torque is given by: 

00 0

 t t t
t i

i

H H HH Q y
Q y

δ δ δω δ
ω

∂ ∂ ∂
= ⋅ + ⋅ + ⋅
∂ ∂ ∂

                 
(14) 

00 0

t t t
t i

i

T T TT Q y
Q y

δ δ δω δ
ω

∂ ∂ ∂
= ⋅ + ⋅ + ⋅
∂ ∂ ∂

                 
(15) 

where partial derivative terms are the gradients of the characteristic curves at the equilibrium point. 
Hence, the linearized state global matrix is: 

[ ]
0

00
turbine

00

2 t t
t

i
l

t t

i

H HR
Q

B
T T
Q

ω

ω

⎡ ⎤∂ ∂
+⎢ ⎥∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦
                    

(16)  

Pipe with vortex rope self-excitation 

Gaseous volume of a vortex rope at full load conditions can be modeled as a function of two 
state variables: the head and the discharge [5], [6]. Therefore the resulting state space continuity 
equation defining the discharge variation due to the occurrence of gaseous volume at the node 

1/ 2i +  is:  
1/2 1

1
i i

i i rope
dH dQQ Q C

dt dt
χ+ +

+− = +
                    

(17) 

where ropeC  and χ  are respectively the rope cavitation compliance and the mass flow gain factor 
defined by: 

1/2 1

;rope rope
rope

i i

dV dV
C

dH dQ
χ

+ +

= − = −
                     

(18) 

The resulting equivalent electrical scheme of a vortex rope at full load conditions is given in Figure 
2 a). 

              
Figure 2 a) Vortex rope modeling b) Pipe of length L with vortex rope self excitation. 

Modeling of a pipe of length L with a vortex rope self excitation, implies to combine the equivalent 
electrical schemes of the vortex rope and the viscoelastic pipe. Moreover, only one pressure node is 
used to model the pipe of length L, see Figure 2 b). It leads to an equivalent concentrated 
compliance equC  defined by two capacitances in parallel: 

0equ ropeC C C= +                           (19) 
where 0C  is the compliance of the wall deformation. Hence, to model the vortex rope self-

excitation in pipe, two rope parameters are available: the rope cavitation compliance and the mass 
flow gain factor. For this investigation, cavitation rope compliance and mass flow gain factor are 
constant. Therefore nonlinearity and linearization are the same as the ones of the viscoelastic pipe 
model. 
 
 

a) b) 
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CASE STUDIES 

Power and pressure fluctuations have been experienced at full load operating conditions during 
commissioning tests in a Pumped-Storage plant located in the southeastern United States featuring 
four 400MW Francis pump-turbines [10]. Koutnik et al. showed that the cavitation compliance and 
the mass flow gain factor of the vortex rope, reached unstable values because of the shutdown of 
one pump turbine. The aim of this paper is to highlight that unstable rope parameters can be stable 
for another location in the hydraulic system. This analysis shows the influence on the stability of the 
vortex rope location with respect to the eigenmodes shapes of the hydraulic system. First a simple 
case including a pipe with cavitation development is treated and results are used to analyze the 
instability of a simple hydraulic power plant. 

Pipe with cavitation development 

The first case study is a pipe with uniform cross section subdivided in three parts as illustrated in 
Figure 3. The central part is where the cavitation development is modeled with the vortex rope self 
excitation model, see Figure 2 b). Hence, the self-excitation can be located everywhere along the 
pipe adjusting the lengths of the upstream and the downstream pipes. 

 

 
Figure 3 Pipe with cavitation development 

Both viscoelastic damping and location of the excitation, influence the stability limits of the 
system. First of all, to predict accurately stability limits and amplitude of pressure fluctuations, the 
equivalent viscoelastic damping parameter equμ  of the pipe model is decisive. To assess the effect 
of this parameter, cavitation development is not taken into account in the system by putting 
compliance and mass flow gain factor equal to zero. System eigenvalues are computed for different 
equivalent viscoelastic dampings and plotted in Figure 4 a). Moreover, for the first ten eigenmodes, 
damping is plotted as function of the equivalent viscoelastic damping in Figure 4 b). 

 
Figure 4 Viscoelastic damping effect on eigenvalues 

If the viscoelastic damping is equal to zero, then damping of all the eigenmodes are equal. 
However, according to the Figure 4 b), the more the viscoelastic damping is high, the more the 
modal damping increases. Moreover, for a given viscoelastic damping, eigenmodes of high 
frequencies have a damping higher than low frequencies. Therefore, this parameter introduces a 
frequency-dependent damping of the system as [16]. 
 

Cavitation parameters 

a) b) 
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Then, influence on stability of the self-excitation location is investigated. Figure 5 shows the first 
six eigenmodes computed for the system without cavitation. The effect of two excitation locations 

are studied and are symbolized in Figure 5 by the vertical dashed lines: 0.5 or 0.75excitationx
L

= . 

 
Figure 5 Discharge modes of a uniform pipe without cavitation development. 

Taking into account the cavitation parameters, eigenvalues are computed for these two locations 
and are compared to the eigenvalues of the system without cavitation, see Figure 6. Abscissa is the 
eigenvalue real part i.e. the modal damping and the ordinate is the imaginary part i.e. the frequency. 
Figure 6 a) is given for the system without viscoelastic damping and Figure 6 b) for a viscoelastic 
damping of 63.10  Pa.sequμ =  . 

 
Figure 6 Effect of excitation location on modal dampings (a) without and (b) with viscoelastic damping 

For a given location of the excitation source, two kinds of eigenmodes must be identified: the ones 
which excitation is located on a discharge node, showed by the dashed lines in Figure 6, and the 
others. For instance, when excitation is located at the half of the pipe length, odd eigenmodes are 
excited on a node whereas three quarter of the pipe length corresponds to a node only for the 2nd, 6th 
and 10th eigenmodes. In such situation, the modal damping of the excited eigenmode is increased. 
The more the eigenmode is high, the more the increase of the damping is significant, see the shape 
of the dashed lines in Figure 6. For the remaining eigenmodes where excitation is not located on a 
node, the modification of the modal damping depends on the sign of the eigenmode slope. When the 
latter is positive, the damping increases whereas it decreases when the sign is negative, see 
respectively 3rd and 5th eigenmode for an excitation at three quarter of the pipe length. The higher is 
the slope, the higher the modification of the damping is significant. When the slope is equal to zero 
on an antinode, the damping is unchanged. One can observe, that influence of excitation is more 
important in this situation than in the particular case of a location on a node. Instability occurs when 
a modal damping is increased and becomes positive. Therefore, according to the previous 
observations, the most critical location of the excitation is not on a node but where the slope is 
positive and maximum. In the case of a system without viscoelastic damping, see Figure 6 a), the 
most unstable eigenmode has a high frequency, since its slope is the highest. However if a 
viscoelastic damping is taken into account, see Figure 6 b), the same behaviors are observed but 
eigenmodes with high frequency are damped and therefore become stable. Hence, potential unstable 
eigenmodes should have a low frequency. 

a) b) 
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Hydraulic power plant 

The simplified hydraulic power plant features two significant pipe cross sections as illustrated in 
Figure 7 and mentioned in Table 1. From this simple installation, a one dimensional hydroacoustic 
model is carried out. Full load operating conditions defined in Table 1 are investigated with the 
modal analysis to show the influence of the vortex rope self-excitation location on system stability. 

 
Figure 7 Simplified layout 

 
Reservoirs Pipe 1 Pipe 2 Pipe 3 Pump turbine  

H1 497 m L1 615 m L2 180 m L3 85 m Specific speed 0.306 
H2 194 m D1 10 m D2 5 m D3 5 m Nominal rotational speed 300 rpm 

  a1 1 000 m/s a2 1 200 m/s a3 1 200 m/s Moment of inertia 2.77 106 kg.m2 
        Thoma number 0.18 

Table 1 Layout dimensions and turbine parameters 

Li, Di and ai are respectively length, diameter and wave speed of the ith pipe. System stability is 
assessed by computing eigenvalues as function of the two rope parameters in Figure 8 a). 
Eigenvalues with positive real part are ploted which allows to identify unstable couple parameters. 
For this investigation, the chosen rope parameters are: 20.01 mC =  and 0.04 sχ = − . According to 
the instability diagram of Figure 8 a), these parameters are identified as unstable ones, leading to 
eigenvalues plotted in Figure 8 b). 

                       
Figure 8 (a) Instability diagram (b) Eigenvalues for unstable rope parameters 

In this configuration, the third eigenmode, which frequency is 1.8 Hz, is unstable. In order to 
explain why the third eigenmode damping is positive, conclusions established from the case study 
of the uniform pipe with cavitation development, can be used. In Figure 9, the first discharge modes 
are plotted a) without and b) with rope self-excitation. The two vertical dashed lines located at 

0.7x
L
=  and 0.9x

L
=  symbolize respectively the change of the pipe cross section and the location 

of the turbine. At this turbine position, the first and the second eigenmodes have slight positive 
slopes. Therefore, dampings are slightly increased but not sufficient to become positive. Then 
according to the third and the fourth eigenmodes, excitation is located on a significant positive 
slope, inducing an increase of the dampings. However, viscoelastic damping reduces more the 
increase of the fourth eigenmode than the third one, which explains why it is only the third 
eigenmode which becomes unstable. 
 
 
 

Pipe 2 Pipe 3Pipe 1 

Rope 
parameters 

a) b) 

H 1 H 2 
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Figure 9 Discharge modes (a) without rope excitation and (b) with rope excitation 
 

Turbine location is now considered as a parameter. The aim is to identify if for these unstable 
rope parameters, a stable location exists or not. Therefore, system eigenvalues have been computed 
for different locations between the cross section change and the downstream reservoir, see Figure 
10. Modal damping and frequency evolution of the first eigenmodes are plotted as function of the 
turbine location. 

 
Figure 10 Turbine position effect on eigenvalues 

Only the third and the fourth eigenmodes feature positive modal damping which may appear if the 

turbine is located between 0.86turbinex
L

=  and 0.95turbinex
L

=  . Therefore if the turbine is out of this 

area which corresponds to 79 m length, the system is stable for the given rope parameters. 
 

CONCLUSION 

Modal analysis based on eigenvalues and eigenmodes computation of the set of nonlinear 
differential equations has been introduced and used to assess influence of turbine location on the 
system stability at full load conditions. It has been showed that relative position of the excitation 
with respect to the eigenmode shapes, changes the eigenmode dampings. Moreover, modeling of the 
viscoelastic behavior induces a frequency dependent damping which is more significant for high 
frequencies. Therefore, the worst location for a full load self-excitation is where the maximum 
positive slope of a low eigenmode is observed. With such an analysis, the relative location of the 
turbine can be optimized at early stage of hydroelectric project for stability assessment. 

a) 

b) 
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